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Abstract: The Kronecker family of the genetic matrices is investigated, which is based on the 
genetic matrix [C T; A G], where C, T, A, G are the letters of the genetic alphabet. The matrix  
[C T; A G] in the second Kronecker power is the (4*4)-matrix of 16 duplets. The matrix             
[C T; A G] in the third Kronecker power is the (8*8)-matrix of 64 triplets. It is significant that 
peculiarities of the degeneracy of the genetic code are reflected in the symmetrical black-and-
white mosaic of these genetic matrices. The article represents interesting mathematical properties 
of these mosaic matrices, which are connected with positional permutations inside duplets and 
triplets; with projector operators; with unitary matrices and cyclic groups, etc. Fractal genetic 
nets are proposed as a new effective tool to study long nucleotide sequences. Some results about 
revealing new symmetry principles of long nucleotide sequences are described. 
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1 Introduction 
 

An investigation of structural analogies between computer informatics and genetic 
informatics is one of the important tasks of modern science in a connection with a creation of 
DNA-computers and with a development of bioinformatics. Information is stored in computers 
in a form of matrices. The author considers matrix presentations of natural ensembles of 
elements of the genetic code. Such matrix approach reveals new structural aspects of the genetic 
system and proposes new possibilities to understand the question, why the nature has chosen 
such special system of genetic elements from huge number of other possible systems. It is 
important because the modern science does not know why the alphabet of genetic language has 
four letters (it could have any other number of letters in principle) and why just these four 
nitrogenous bases are chosen as elements of the genetic alphabet from billions possible chemical 
compounds.  

This article is devoted to analysis of ensembles of molecular structures of the genetic 
code from the viewpoint of matrix methods of computer informatics. The used symbols A, C, G, 
T mean adenine, cytosine, guanine and thymine that are elements of the genetic alphabet in DNA 
(thymine T is replaced by uracil U in RNA). This version of the article uses the symbol T instead 
of the symbol U in previous versions. Also the genetic matrix [C T; A G] is used instead of the 
related genetic matrix [C A; U G] in previous versions (the using of the matrix [C T; A G] allows 
showing a connection of the genetic system with well-known types of hypercomplex numbers 
more easily). New essential materials are added about fractal genetic nets and Symmetry 
Principles of long DNA-sequences. 
 

2 The natural system of binary numeration of multiplets in the genetic matrices  
 
The Kronecker family of genomatrices P(n) = [C T; A G](n) gives complete sets of genetic 

multiplets in the universal mathematical form based on the square matrix of the genetic alphabet. 
Each genomatrix P(n)=[C T; A G](n) contains a complete set of n-plets as its matrix elements. For 
example, the (8*8)-genomatrix P(3)= [C T; A G](3) contains all 64 triplets, which encode 20 
amino acids and stop-signals (Figure 1). The set of the letters A, C, G, T of the genetic alphabet 
is not an arbitrary one, but it bears an important system of binary-opposite attributes. The system 
of such attributes parts the four-letter alphabet into three various pairs of letters, which are 
equivalent from a viewpoint of one of these attributes or its absence: 1) С=T, A=G (according to 
binary-opposite attributes: “pyrimidine” or “purine”); 2) А=С, G=T (according to attributes: 
“keto” or “amino” [Waterman, 1999, § 6.3]; 3) С=G, А=T (according to attributes: three or two 
hydrogen bonds are materialized in these complementary pairs).  

Let us number these binary-opposite attributes by numbers N = 1, 2, 3 and ascribe to each 
of the four letters A, C, G, T the symbol “1N” , if a letter has one of two attributes marked by 
number “N”, and the symbol “0N”, if this letter has the opposite attribute marked by the same 
number N (see details on Figure 2). In that way we receive representation of the four-letter 
alphabet in the system of its three “binary sub-alphabets to attributes”.  
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Figure 1. The beginning of the Kronecker family of symbolic genomatrices Р(n)=[C T; A G](n) for 
n = 1, 2, 3. Each genomatrix[C T; A G](n) has individual binary numeration for each column, 
each row and each n-plet due to the sub-alphabets of the genetic alphabet (see explanations in 

text).The decimal equivalents of these binary numbers are shown in brackets. 
 
 

 Symbols of genetic “letter” from a viewpoint of a 
kind of binary-opposite attributes 

C A G T 

 

N=1 11 – pyrimidine 
01 – purine 

11 01 01 11 

N=2 12 – amino 
02 – keto 

12 12 02 02 

N=3 13 – a letter with three hydrogen bonds 
03 – a letter with two hydrogen bonds 

13 03 13 03 

Figure 2. Three binary sub-alphabets according to three kinds of binary-opposite attributes  
in the set of the nitrogenous bases C, A, G, T 

 
The four-letter alphabet of the genetic code is curtailed into the two-letter alphabet on the 

basis of each kind of the attributes. For example, from the viewpoint of the first kind of binary-
opposite attributes (N=1) we have the alphabet from two letters О1 and 11 (instead of the four-
letter alphabet), which can be named “the binary sub-alphabet to first kind of binary attributes”. 
The binary sub-alphabets of the genetic alphabet are the basis for the special system of 
numerations of each n-plet, each column and each row of the genomatrices Р(n). Let us describe 
this system. 

A binary numeration of columns and rows of the matrix P(n) = [C T; A G](n) (see Figure 1) 
is connected with binary symbols of letters C, A, G, T in the binary sub-alphabets №№ 1 and 2 



(N=1 and N=2) respectively. More precisely, to get number of a column of the matrix                  
[C T; A G](n), one should take a sequence of letters of any n-plet from this column and write the 
corresponding sequence of the binary symbols of these letters from the viewpoint of the binary 
sub-alphabet   № 1. This binary sequence is binary number of this column (all n-plets of this 
column are equivalent to each other from the viewpoint of binary sub-alphabet № 1). For 
example, let’s consider the matrix [C T; A G](3) and its column with a triplet CAT (Figure 1). 
From the viewpoint of the binary sub-alphabet № 1 (where C=T=1 and A=0), the sequence of 
letters CAT is equivalent to the binary sequence 101. This binary number 101 is the numeration 
number of the whole column because all triplets of this column have the same binary sequence 
101 from the viewpoint of binary sub-alphabet № 1. 

The binary number of a row of the matrix [C T; A G](n) is constructed in a similar 
algorithmic way by interpretation of any n-plet of this row from the viewpoint of the binary sub-
alphabet № 2. For example, let us consider the same triplet CAT in the matrix [C T; A G](3). 
From the viewpoint of the binary sub-alphabet № 2 (where C=A=1 and T=0), the sequence of 
letters CAT is equivalent to the binary sequence 110. This binary number 110 is the numeration 
number of the matrix row with the triplet CAT because all triplets of this column have the same 
binary sequence 110 from the viewpoint of binary sub-alphabet № 1. 

Any matrix [C T; A G](n) has a binary coordination number for each of its n-plets. All sets 
of its n-plets have a series of binary coordination numbers algorithmically, which are equivalent 
to a series of integers 0, 1, 2 ,…, (4n-1) in decimal numeration system. Such coordination number 
of each n-plet is constructed by means of combination of binary numbers of its row and its 
column into the single whole in a form of 2n-digit binary number. The first half of such 
coordination number coincides with binary number of the matrix row of this n-plet, and the 
second half coincides with binary number of its column. For example, the considered triplet 
CAT has the individual coordinate 110101 in the matrix [C T; A G](3)  (Figure 1). At translation 
of such 2n-digit binary numbers into the decimal numeration system, all n-plets receive their 
individual decimal numbers from the series of integers 0, 1, 2 ,…, (4n-1). All n-plets are disposed 
in the genomatrices regularly in a form of sequences with the monotonous change of coordinates 
of n-plets. For example, all triplets in the genomatrix [C T; A G](3)  have their natural ordering in 
accordance with the monotonous sequence of their coordinates 0, 1, 2,…, 63. Such natural 
numerations of well-ordered n-plets are useful for investigation of rules of symmetric relations 
among elements of various dialects of the genetic code. In this way we obtain the opportunity to 
work with numbers in genetic codes. In other words, we digitize elements of the genetic code. 

One can replace each triplet of the genomatrix [C T; A G](3) by its 6-digit binary 
coordinate (Figure 1). It is interesting, that such variant of the genomatrix P(3) is famous for a few 
thousand years: it is identical to the famous matrix of 64 hexagrams in  Fu-Xi’s order from the 
ancient Chinese “The Book of Changes” (“I Ching”). This matrix of 64 hexagrams was declared 
by ancient Chinese as the universal natural archetype [Petoukhov, 2001a,b; 2005; 2008b]. Each 
hexagram in the Chinese matrix is arranged by two independent trigrams, which symbolize its 
row and its column. But each element of the genomatrix [C T; A G](3)  is also connected with a 
binary hexagram arranged by two independent trigrams, which symbolize its row and its column. 
The creator of the first computer G.Leibniz was amazed by this Chinese matrix, when he became 
acquainted with it, because he considered himself as the originator of the binary numeration 
system, which was presented in this ancient matrix already. He saw in peculiarities of this matrix 
many materials for his ideas of a universal language and binary systems. “Leibniz has seen in 
this similarity the evidence of the pre-established harmony and unity of the divine plan for all 
epochs and for all people” [Schutskiy, 1997, с. 12]. Thereby our matrix approach to the genetic 
code (“matrix genetics”) leads us additionally to historical analogies and to the problem of a 
connection of times. One can add that molecular genetics is interested for a few decades already 
to investigate analogies between the genetic code and the system of “I Ching” [Stent, 1969; 
Jacob, 1974, 1977; and others]. Modern physics pays attention to “I Ching” also [Capra, 2000]. 

 



        3 Realignments of the genomatrix [C A; T G](3) by permutations of positions in triplets       
  
Now we continue the analysis of matrix presentations of the genetic code {see 

[Petoukhov, arXiv:0802.3366 (q-Bio.Qm)]}. Modern science recognizes many variants (or 
dialects) of the genetic code, data about which are shown on the NCBI’s website 
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. 17 variants (or dialects) of the 
genetic code exist which differ one from another by some details of correspondences between 
triplets and objects encoded by them. Most of these dialects (including the so called Standard 
Code and the Vertebrate Mitochondrial Code) have the following general scheme of their 
degeneracy where 32 “black” triplets with “strong roots” and 32 “white” triplets with “weak” 
roots exist.  
      In this general or basic scheme, the set of 64 triplets contains 16 subfamilies of triplets, every 
one of which contains 4 triplets with the same two letters on the first positions of each triplet (an 
example of such subsets is the case of the four triplets CAC, CAA, CAT, CAG with the same 
two letters CA on their first positions). We shall name such subfamilies as the subfamilies of 
NN-triplets. In the described basic scheme of degeneracy, the set of these 16 subfamilies of NN-
triplets is divided into two equal subsets from the viewpoint of degeneration properties of the 
code (Figure 3). The first subset contains 8 subfamilies of so called “two-position” NN-triplets, a 
coding value of which is independent of a letter on their third position. An example of such 
subfamilies is the four triplets CGC, CGA, CGT, CGC (Figure 3), all of which encode the same 
amino acid Arg, though they have different letters on their third position. All members of such 
subfamilies of NN-triplets are marked by black color in Figures 3 and 4. 

      The second subset contains 8 subfamilies of “three-position” NN-triplets, the coding 
value of which depends on a letter on their third position. An example of such subfamilies in 
Figure 3 is the four triplets CAC, CAA, CAT, CAC, two of which (CAC, CAT) encode the 
amino acid His and the other two (CAA, CAG) encode another amino acid Gln. All members of 
such subfamilies of NN-triplets are marked by the white color in the genomatrix  P(3) =                
[C T; A G](3)  on Figure 4. So the genomatrix [C T; A G](3) has 32 black triplets and 32 white 
triplets. Each subfamily of four NN-triplet is disposed in an appropriate (2x2)-subquadrant of the 
genomatrix [C T; A G](3) due to the Kronecker algorithm of construction of the genomatrix       
[C T; A G](3) of triplets from the alphabet genomatrix P = [C T; A G]  (Figure 1).  

      Here one should recall the work by Rumer [Rumer, 1968] where a combination of 
letters on the two first positions of each triplet was named as a “root” of this triplet. A set of 64 
triplets contains 16 possible variants of such roots. Taking into account properties of triplets, 
Rumer has divided the set of 16 possible roots into two subsets with eight roots in each. Roots 
CC, CT, CG, AC, TC, GC, GT, GG form the first of such octets. They were named by Rumer 
"strong roots". The other eight roots CA, AA, AT, AG, TA, TT, TG, GA form the second octet 
and they were named weak roots. When Rumer published his works, the Vertebrate 
Mitochondrial code and some of the other code dialects were unknown. But one can check easily 
that the set of 32 black (white) triplets, which we show on Figure 3 for cases of the Standard 
code and the Vertebrate Mitochondrial Code, is identical to the set of 32 triplets with strong 
(weak) roots described by Rumer. So, using notions proposed by Rumer, the black triplets can be 
named as triplets with the strong roots and the white triplets can be named as triplets with the 
weak roots. Rumer believed that this symmetrical division into two binary-oppositional 
categories of roots is very important for understanding the nature of the genetic code systems.  
      One can check easily on the basis of data from the NCBI’s website 
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) that the following 11 dialects of the 
genetic code have the same basic scheme of degeneracy with 32 black triplets and with 32 white 
triplets: 1) the Standard Code; 2) the Vertebrate Mitochondrial Code; 3) the Yeast Mitochondrial 
Code; 4) the Mold, Protozoan, and Coelenterate Mitochondrial Code and the 
Mycoplasma/Spiroplasma Code; 5) the Ciliate, Dasycladacean and Hexamita Nuclear Code;        
6) the Euplotid Nuclear Code; 7) the Bacterial and Plant Plastid Code; 8) the Ascidian 



Mitochondrial Code; 9) the Blepharisma Nuclear Code; 10) the Thraustochytrium Mitochondrial 
Code; 11) the Chlorophycean Mitochondrial Code. In this article we will consider this basic 
scheme of the degeneracy which is presented by means of a black-and-white mosaics in a family 
of genetic matrices (P(3) = [C T; A G](3), etc.) on Figure 4.   
      One can mentioned that the other 6 dialects of the genetic code have only small differences 
from the described basic scheme of degeneracy: the Invertebrate Mitochondrial Code; the 
Echinoderm and Flatworm Mitochondrial Code; the Alternative Yeast Nuclear Code; The 
Alternative Flatworm Mitochondrial Code; the Trematode Mitochondrial Code; the 
Scenedesmus obliquus mitochondrial Code. 
      According to general traditions, the theory of symmetry studies initially those natural objects 
that possess the most symmetrical character, and then it constructs a theory for cases of 
violations of this symmetry in other kindred objects. For this reason one should pay special 
attention to the Vertebrate Mitochondrial code which is the most symmetrical code among 
dialects of the genetic code and which corresponds to the basic scheme of the degeneracy. One 
can mention additionally that some authors consider this dialect not only as the most “perfect” 
but also as the most ancient dialect [Frank-Kamenetskiy, 1988], but this last aspect is a debatable 
one. Figure 3 shows the correspondence between the set of 64 triplets and the set of 20 amino 
acids with stop-signals (Stop) of protein synthesis in the Standard Code and in the Vertebrate 
Mitochondrial Code. 

THE STANDARD CODE 
8 subfamilies of the “two-position NN-
triplets” (“black triplets”) and the amino 
acids, which are encoded by them 

8 subfamilies of the “three-position  NN-
triplets” („white triplets”) and the amino 
acids, which are encoded by them 

CCC, CCT, CCA, CCGè Pro CAC, CAT, CAA, CAG è His, His, Gln, Gln 
CTC, CTT, CTA, CTGè Leu  AAC, AAT, AAA, AAG  è Asn, Asn, Lys, Lys 
CGC, CGT, CGA, CGGè Arg ATC, ATT, ATA, ATG  è Ile, Ile, Ile, Met 
ACC, ACT, ACA, ACGè Thr AGC, AGT, AGA, AGG è Ser, Ser, Arg, Arg 
TCC, TCT, TCA, TCGè Ser TAC, TAT, TAA, TAG è Tyr, Tyr, Stop, Stop 
GCC, GCT, GCA, GCGè Ala TTC, TTT, TTA, TTG è Phe, Phe, Leu, Leu 
GTC, GTT, GTA, GTGè Val TGC, TGT, TGA, TGG è Cys, Cys, Stop, Trp 
GGC, GGT, GGA, GGGè Gly GAC, GAT, GAA, GAG è Asp, Asp, Glu, Glu 

 
THE VERTEBRATE MITOCHONDRIAL CODE 
8 subfamilies of the “two-position 
NN-triplets” (“black triplets”) and the 
amino acids, which are encoded by 
them 

8 subfamilies of the “three-position  NN-
triplets” („white triplets”) and  the amino acids, 
which are encoded by them 

CCC, CCT, CCA,  CCGè Pro CAC, CAT, CAA, CAG  è His, His, Gln, Gln 
CTC, CTT, CTA,  CCGè Leu  AAC, AAT, AAA, AAG è Asn, Asn, Lys, Lys 
CGC, CGT, CGA,  CGGè Arg ATC, ATT, ATA, ATG è Ile, Ile, Met, Met 
ACC, ACT, ACA,  ACGè Thr AGC, AGT, AGA, AGGè Ser, Ser, Stop, Stop 
TCC, TCT, TCA,  TCGè Ser TAC, TAT, TAA, TAG  è Tyr, Tyr, Stop, Stop 
GCC, GCT, GCA, GCGè Ala TTC, TTT, TTA, TTG  è  Phe, Phe, Leu, Leu 
GTC, GTT, GTA, GTGè Val TGC, TGT, TGA, TGG  è  Cys, Cys, Trp, Trp 
GGC, GGT, GGA, GGGè Gly GAC, GAT, GAA, GAG  è Asp, Asp, Glu, Glu 
 
Figure 3. Two examples of the basic scheme of the genetic code degeneracy with 32 

“black” triplets and 32 “white” triplets. Top: the case of the Standard Code. Bottom: the case of 
the Vertebrate Mitochondrial Code. Yellow color highlights the triplets which changed their 
code meanings in relation to the Standard Code. All initial data are taken from the NCBI’s web-
site http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.  
 

The author has revealed that the disposition of the black and white triplets in the 
genomatrix P(3) = [C T; A G](3) for this basic scheme of the genetic code degeneracy gives the 
very symmetrical black-and-white mosaic of the code degeneracy (Figure 4), though the most 



variants of their possible dispositions give quite asymmetric mosaics [Petoukhov, 
arXiv:0802.3366 (q-bio.QM)]. 

It is much unexpected that any kind of permutation of positions in triplets, which is 
accomplished in all 64 triplets simultaneously, leads to the transformed genomatrix, which 
possesses a symmetrical mosaic of degeneracy also. The six kinds of sequences of positions in 
triplets exist: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. It is obvious that if one changes the 
positional sequence 1-2-3 in triplets, for example, by the sequence 2-3-1, the most triplets change 
their disposition in the genomatrix. And the initial genomatrix is reconstructed cardinally into the 
new mosaic matrix. For instance, in the result of such permutation the black triplet CGA is 
replaced in its matrix cell by the white triplet GAC, etc. Let us denote the six genomatrices, 
which correspond to the mentioned kinds of positional sequences in triplets, by the symbols 
PCTAG

123
(3)(=P(3)=[C T; A G](3)), PCTAG

231
(3), PCTAG

312
(3), PCTAG

132
(3), PCTAG

213
(3), PCTAG

321
(3). Here 

the bottom indexes show the appropriate positional sequences in triplets; the upper index shows 
the kind of basic genomatrix [C T; A G] of the Kronecker family (later we shall consider other 
cases of such basic genomatrices). Figure 4 demonstrates these six genomatrices. 

CCC CCT CTC CTT TCC TCT TTC TTT 
CCA CCG CTA CTG TCA TCG TTA TTG 
CAC CAT CGC CGT TAC TAT TGC TGT 
CAA CAG CGA CGG TAA TAG TGA TGG 
ACC ACT ATC ATT GCC GCT GTC GTT 
ACA ACG ATA ATG GCA GCG GTA GTG 
AAC AAT AGC AGT GAC GAT GGC GGT 
AAA AAG AGA AGG GAA GAG GGA GGG 

 
CCC CTC TCC TTC CCT CTT TCT TTT 
CAC CGC TAC TGC CAT CGT TAT TGT 
ACC ATC GCC GTC ACT ATT GCT GTT 
AAC AGC GAC GGC AAT AGT GAT GGT 
CCA CTA TCA TTA CCG CTG TCG TTG 
CAA CGA TAA TGA CAG CGG TAG TGG 
ACA ATA GCA GTA ACG ATG GCG GTG 
AAA AGA GAA GGA AAG AGG GAG GGG 
        
CCC CCT TCC TCT CTC CTT TTC TTT 
CCA CCG TCA TCG CTA CTG TTA TTG 
ACC ACT GCC GCT ATC ATT GTC GTT 
ACA ACG GCA GCG ATA ATG GTA GTG 
CAC CAT TAC TAT CGC CGT TGC TGT 
CAA CAG TAA TAG CGA CGG TGA TGC 
AAC AAT GAC GAT AGC AGT GGC GGT 
AAA AAG GAA GAG AGA AGG GGA GGG 
        
CCC TCC CTC TTC CCT TCT CTT TTT 
ACC GCC ATC GTC ACT GCT ATT GTT 
CAC TAC CGC TGC CAT TAT CGT TGT 
AAC GAC AGC GGC AAT GAT AGT GGT 
CCA TCA CTA TTA CCG TCG CTG TTG 
ACA GCA ATA GTA ACG GCG ATG GTG 
CAA TAA CGA TGA CAG TAG CGG TGG 
AAA GAA AGA GGA AAG GAG AGG GGG 
        
CCC TCC CCT TCT CTC TTC CTT TTT 
ACC GCC ACT GCT ATC GTC ATT GTT 
CCA TCA CCG TCG CTA TTA CTG TTG 
ACA GCA ACG GCG ATA GTA ATG GTG 
CAC TAC CAT TAT CGC TGC CGT TGT 
AAC GAC AAT GAT AGC GGC AGT GGT 
CAA TAA CAG TAG CGA TGA CGG TGG 
AAA GAA AAG GAG AGA GGA AGG GGG 



 
CCC CTC  CCT  CTT  TCC  TTC  TCT TTT  
CAC CGC CAT  CGT  TAC TGC  TAT  TGT  
CCA CTA CCG CTG TCA TTA  TCG  TTG  
CAA CGA  CAG  CGG  TAA TGA TAG  TGG 
ACC  ATC  ACT  ATT GCC  GTC  GCT GTT 
AAC  AGC  AAT AGT GAC GGC GAT  GGT 
ACA  ATA  ACG  ATG  GCA  GTA GCG  GTG  
AAA AGA  AAG  AGG GAA  GGA  GAG  GGG  

Figure 4. The genomatrices PCTAG
123

(3) (or P(3) in Figure 1), PCTAG
231

(3), PCTAG
213

(3), 
PCTAG

321
(3),PCTAG

312
(3), PCTAG

132
(3).Each matrix cell has a triplet and an amino acid (or stop-signal) 

coded by this triplet. The black-and-white mosaic presents a specificity of the basic scheme of 
the genetic code degeneracy. 

 
It should be mentioned that the quantity of variants of possible dispositions of 64 genetic 

triplets in 64 cells of the genomatrix [C T; A G](3) is equal to the huge number 64!~1089; the 
most of these variants have not symmetries in a disposition of these black triplets and white 
triplets in (8*8)-matrix, of course. But each of these six genomatrices has a symmetric character 
unexpectedly (Figure 4). For example, the first genomatrix PCTAG

123
(3) = [C T; A G](3) has the 

following symmetric features: 
1. The upper and lower halves of this matrix are mirror-antisymmetric to each other by its 

colors: any pair of cells, disposed by the mirror-symmetric manner in these halves, has 
opposite colors. 

2. Diagonal quadrants of the matrix are identical to each other from the viewpoint of their 
mosaics. 

3. The adjacent columns 0-1, 2-3, 4-5, 6-7 are identical to each other from the viewpoint of 
the mosaic and of the disposition of the same amino acids in their proper cells. 

4. Mosaics of all columns of the (8x8)-genomatrix and of its (4x4)-quadrants have a 
meander-line character, which is connected with Rademacher functions from theory of 
digital signal processing. 

5. The turning of the genomatrix PCTAG
123

(3) into a cylinder with an agglutination of its upper 
and lower borders reveals a symmetric pattern of cyclic shifts. This pattern is 
demonstrated more clearly by the tessellation of a plane with this mosaic genomatrix 
PCTAG

123
(3) (Figure 5, left).  

 
Each of the other 5 genomatrices on Figure 4 has symmetrical properties also, first of all, 

the following two properties: 
1. The upper and lower halves of each matrix are mirror-antisymmetric to each other by its 

colors:any pair of cells, disposed by the mirror-symmetric manner in these halves, has 
opposite colors. 

2. Mosaics of all columns of each (8x8)-genomatrix and of its (4x4)-quadrants have a 
meander-line character, which is connected with Rademacher functions from theory of 
digital signal processing. 

 
4  The tessellation of a plane by the mosaics of the genetic matrices 

 
The plane with the tessellation by the mosaic genomatrix PCTAG

123
(3) = [C T; A G](3) has 

the ornamental pattern with two pattern units. These two pattern units are identical in 
their forms, but they are inverse in their colors (black and white) and orientations (left 
and right). This pattern has the character of cyclic shifts that permits to think about a 
possible genetic meaning of cyclic codes, which play significant role in the theory of 
digital signal processing.   



 
 
 

 

 

 

Figure 5. At the left: the tessellation of a plane by the mosaics of PCTAG
123

(3) from  Figure4.                                 
At the right: the tessellation of a plane by the mosaics of PCTAG

213
(3) from Figure 4. 

 

The second genomatrix PCAUG
231

(3) on Figure 4 is generated by the cyclic shift of positions in 
triplets (2-3-1 instead of 1-2-3).  This genomatrix has the symmetric features also: 

1. The upper and lower halves of this matrix are mirror-antisymmetric to each other by their 
colors. 

2. All (4x4)-quadrants are identical to each other by their mosaics. 
3. The left and the right halves of the genomatrix are identical to each other from the 

viewpoint of dispositions of all amino acids and stop-signals in the case of the vertebrate 
mitochondrial code from Fig.3.  

4. The genomatrix has 4 pairs of identical columns again: 0-4, 1-5, 2-6, 3-7 that are not 
adjacent columns in this matrix. 

5. All columns of the (8x8)-genomatrix and its (4x4)-quadrants have a meander-line 
character again, which is connected with Rademacher functions. 

 
Note, that the mosaic of the initial (8x8)-genomatrix PCTAG

123
(3) is reproduced in (4x4)-

quadrants of this PCTAG
213

(3) in a fractal manner: the coefficient of the fractal ranging of areas is 
equal to 4. The tessellations of a plane by the mosaics of PCTAG

123
(3)  and of PCTAG

213
(3) 

demonstrate their fractal correspondence very clearly (Figure5). Such scale transformation of 
areas in the mosaics of the code degeneration will be named the “tetra-reproduction” 
transformation. The cyclic-generated genomatrix PCTAG(3)

231 has the quantity of the pattern units 
4 times more than the initial genomatrix PCTAG(3)

123 due to this tetra-reproduction (Figures 4 and 
5).This fact is interesting because an analogical tetra-reproduction (or a tetra-division) exists in 
the living nature always in a course of division of gametal cells, which are transmitters of genetic 
information. In this mysterious act of meiosis, one gamete is divided into four new gametes (this 
fact was mentioned specially by Schrodinger in his famous book [Schrodinger, 1955, §13]). The 
described tetra-reproduction of the mosaics of the genomatrices can be utilized, in particular, in 
formal models of meiosis. We will return to this reproduction property below in Section 9. 

Presented materials of the matrix genetics lead us to questions of biological meaning. 
Really, we revealed unexpectedly that a simple algorithmic re-packing (re-arrangement) of 
elements in triplets by the cyclic shift is sufficient to receive new genomatrix with the fractal 
tetra-reproducing of mosaics of the code degeneration. It seems that a similar re-packing of 
molecular elements in biological object can be sufficient also to provide foundations of a process 
of tetra-reproducing in some cases, first of all, in the case of meiosis. These and other 
considerations permit us to put forward a hypothesis of molecular re-packing. According to this 
hypothesis, the mysterious process of meiosis is based on a mechanism of algorithmic re-
arrangement of molecular elements of gametes with a participation of algorithms of cyclic and 
dyadic shifts. In our opinion, the principle of re-packing of biological molecules and of their 
ensembles is an important general principle of biological self-organization. It is interesting also 
that one can compare the tetra-division of material gametes with the tetra-division of the code 
genomatrices, which are information objects. These materials testify that meiosis is not an 



accidental material process but it is coordinated with more ancient information structures of the 
genetic code in their matrix form. 

Now let us additionally consider on Figure 4 the genomatrix PCTAG
321

(3) with the inverse 
order of positions in all triplets (3-2-1 instead of 1-2-3). One can compare its mosaic with the 
mosaic of the PCTAG

213
(3) based on the cyclic shift of positions in all triplets: 2-1-3 instead of          

3-2-1. In this case the similar phenomenon of the tetra-reproduction of these mosaics becomes 
apparent again but with new pattern (Figure 6). 

 

 
Figure 6. The tessellations of a plane by the mosaics of the genomatricesРCTAG

213 (at the   
                left) and РCTAG

321 (on the right) 
 
One can note also that all six genomatrices on Figure 4 are interconnected by special 

permutations of their columns and rows. The same genomatrices can be received from the initial 
genomatrix PCTAG

123
(3) by appropriate permutations of positions in binary 3-digit numeration of 

their columns and rows. In other words, the “local” permutations of positions in triplets give the 
same results as “global” permutations of positions in binary 3-digit numeration of columns and 
of rows. All six genomatrices on Figure 4 are connected with Hadamard matrices on the basis of 
the T-algorithm (its another name is the U-algorithm) described in [Petoukhov, 2005; 2008 a, b]. 
The presented permutations gave interesting results in their application to genomatrices. It seems 
that applications of similar permutations to genetic sequences of triplets can give interesting 
results also. Our study of properties of permutations in structural regularities of long nucleotide 
sequences is briefly described in the end of the article in a connection with fractal genetic nets. 

 
5 The genetic encoding and a fast Fourier transformation 
 
The revelation of the permutation group of the six symmetric genomatrices PCTAG

123
(3) (or 

P(3) in Figure 1), PCTAG
231

(3), PCTAG
213

(3), PCTAG
321

(3),PCTAG
312

(3), PCTAG
132

(3) seems to be the 
essential fact additionally because of heuristic associations with the mathematical theory of 
digital signal processing, where similar permutations are utilized for a long time as the useful 
tool. For example, the book [Ahmed, Rao, 1975, § 4.6] gives the example of the important role 
of the method of data permutation and of binary inversion for one of variants of the algorithm of 
a fast Fourier transformation. In this example the numeric sequence 0, 1, 2, 3, 4, 5, 6, 7 is 
reformed into the sequence 0, 4, 2, 6, 1, 5, 3, 7. But the same change of the numeration of the 
columns and the rows takes a place in our case (Figure 4) where the genomatrix РCTAG

123 is 
reformed into the genomatrix РCTAG

321 in the result of the inversion of the binary numeration of 
the columns and the rows (or of the inversion of the positions in the triplets). These and other 
facts permit to think that the genetic system has a connection with a fast Fourier transformation 
(or with a fast Hadamard transformation) [Petoukhov, 2006, 2008b]. 
 

6 The tetra-reproduction of the genomatrices in their binary presentation 
 

Why the nature has chosen this variant of degeneration of genetic code, which gives such 
mosaics? Whether these six “triplets-permutations” genomatrices PCTAG

123
(3), PCTAG

231
(3), 

PCTAG
213

(3), PCTAG
321

(3), PCTAG
312

(3), PCTAG
132

(3) have such mutual mathematical property that can 
be associated with famous biological facts of genetic inheritance? Yes, such mutual property 
exists and it is connected with the tetra-reproduction by analogy with meiosis again. This 



property is not-trivial one and it does not exist in the most variants of arbitrary dispositions of 32 
black triplets and 32 white triplets in (8*8)-matrices. 

We have mentioned already that each mosaic row of the considered genetic matrices (see 
Figure 4) corresponds to one of Rademacher functions ( rn(t) = sign(sin2nπt), n = 1, 2, 3,…), 
which consists of components “+1” and “-1” only (see also [Petoukhov, arXiv:0802.3366v3]). 
Taking this fact into account, let us represent the black-and-white mosaic of each from the 
mentioned six genomatrices as a binary mosaic of numbers “+1” and “-1” by means of replacing 
black (white) color of each matrix cell by an element “+1” (“-1”). In such “Rademacher 
representation”, the genomatrices PCTAG

123
(3), PCTAG

231
(3), PCTAG

213
(3), PCTAG

321
(3),PCTAG

312
(3), 

PCTAG
132

(3) are reformed into the genomatrices B123, B231, B312, B132, B213, B321 (Figure 7). 
Unexpected mutual property of these six binary genomatrices on Figure 7 is the following one. 
The multiplication of each genomatrix with itself (the square of each genomatrix) gives a 
phenomenon of its tetra-reproduction: four duplicates of the genomatrix are appeared. Really the 
following formulas take place:   

 
               (B123)2 = 4*B123;      (B231)2 = 4*B231;       (B312)2 = 4*B312 
 
               (B132)2= 4*B132;      (B213)2 = 4*B213;        (B321)2  = 4*B321           (1) 
 
This fact is interesting because the genetic code is destined by the nature for reproduction 

of biological structures, and matrices of the genetic code in their binary representation possess 
the non-trivial algebraic property of their own tetra-self-reproduction.  

The set of these six binary genomatrices has many other interesting properties (for 
instance, B123*B321+B123*B132 = B123

2, etc.), which generate heuristic associations with genetic 
phenomena and which can be utilized to model the meiosis process of tetra-reproduction of 
gametal cells with a specific behavior of chromosomes. But these properties do not considered in 
this article.  

It can be mentioned additionally that one can consider those “complementary” variants of 
the genomatrices PCTAG

123
(3) (or P(3) in Figure 1), PCTAG

231
(3), PCTAG

213
(3), PCTAG

321
(3),PCTAG

312
(3), 

PCTAG
132

(3), which are received by replacement of each triplet by its complementary triplet (the 
example of the complementary triplets is CAG and GTC). In each case the “complementary” 
matrix is identical to 180-degree turn of the initial matrix. The “complementary” genomatrices in 
similar binary presentations have the same properties of their tetra-reproduction [Petoukhov, 
2008,b].  

B123  B231  В213 
                          
                          
                          
                          
                          
                          
                          
                          
                          

В321  В312  В132 
                          
                          
                          
                          
                          
                          
                          
                          



Figure 7. Binary numeric genomatrices, in which each black cell means the element “+1”;          
each white cell means the element “-1”. 

7 Projector operators in matrix presentations of the genetic code 

 The “Rademacher representation” of the genetic matrices on Figure 7 reveals also an 
unexpected connection of the genetic code structures with so called “projector operators”, which 
are well-known in quantum mechanics, automatic control systems, etc. By definition, a linear 
operator P in a linear space is named a projector operator if it satisfies the following condition: 

                                                                          P2 = P                                                          (2) 

 Let us consider matrices Y123 = 4-1*B123, Y231 = 4-1*B231,Y312 = 4-1*B312,Y321 = 4-1*B321, 
Y213 = 4-1*B213, Y132 = 4-1*B132. One can check that each of these matrices Yk is a projector 
operator because it satisfies the condition (2). We will name projector operators, which are based 
on genetic matrices, as “genoprojector operators”. Some of these genoprojectors are 
commutative, other ones are non-commutative. Some examples of commutative genoprojectors 
are the following: Y312*Y213=Y213*Y312, Y123*Y321=Y321*Y123, Y231*Y132=Y132*Y231. Of course, 
each of new matrices Y123*Y321, Y231*Y132, Y312*Y213 is a projector also. 

By definition, two projectors P1 and P2 are named orthogonal if P1*P2=0. One can check 
that the three genoprojectorsY312*Y213, Y123*Y321, Y231*Y132 are orthogonal each to other. 

Some other variants of genetic (8*8)-matrices of triplets in the similar „Rademacher 
representation” with the same general factor 4-1 are genoprojector operators also: [G A; T C](3), 
[G T; A C](3), [C A; T G](3). These matrices contain C and G along their diagonals. All possible 
variants of permutations of positions of triplets (1-2-3, 2-3-1, etc) in these matrices lead to new 
genoprojector operators. But the genomatrices, which contain the letters C and G not along their 
diagonals, do not lead to projector operators: [C T; G A](3), [C G; A T](3), etc. The (8*8)-matrices 
of genoprojectors are connected with genetic 8-dimensional Yin-Yang algebras (or bipolar 
algebras) which were presented in our works [Petoukhov, arXiv:0803.3330 and 
arXiv:0805.4692; Petoukhov, 2008b; Petoukhov, He, 2009].  

 A similar situation is true for mosaic (4*4)-matrices of duplets where black (white) cells 
contain two first letters of the subsets of black (white) triplets (see Figure 8): [C  A; T  G](2),         
[G A; T C](2), [G T; A C](2), [C T; A G](2). The similar numeric presentation of these 
genomatrices (where black cells and white cells contain elements „+1” and „-1” correspondingly, 
with the general factor 2-1 in this case) lead to new genoprojectors. The permutation of positions 
in all duplets (2-1 instead 1-2) lead to new genoprogectors again (these genoprojectors are non-
commutative). But this is true only for genomatrices which contain C and G along their 
diagonals. Other genomatrices, which contain C and G not along their diagonals, do not lead to 
projector operators.  

It is known that theory of projector operators has a set of interesting results and 
applications (see for example [Halmos, 1974; Messiah, 1999]). For example every family of 
commutative projectors generates algorithmically a Boolean algebra of projectors. Taking this 
into account, questions about a set of genoprojectors and corresponding Boolean algebras of 
genoprojectors should be studied systematically in theoretical and applied aspects including their 
biological meaning. The phenomenological fact of the connection of genetic code structures with 
special classes of projective operators allows developing new methods in bioinformatics and in 
technological fields of genetic algorithms on the base of the theory of projectors. Specifically we 
study applications of the theory of projectors for analysis of genetic sequences. 



 
 

[C A; T G](2)= 
 

CC CA AC AA  1 -1 1 -1 
CT CG AT AG è2-1* 1 1 -1 -1 
TC TA GC GA  1 -1 1 -1 
TT TG GT GG  -1 -1 1 1 

 
 

[C T; A G](2)= 
 

CC CT TC TT  1 1 1 -1 
CA CG TA TG è2-1* -1 1 -1 -1 
AC AT GC GT  1 -1 1 1 
AA AG GA GG  -1 -1 -1 1 

Figure 8. Some examples of matrix projector operators (the numeric matrices on the right side)                      
that correspond to mosaic matrices of duplets. 

8 Unitary symmetries in matrix presentations of the genetic code 

Now we will pay our attention again to the fact that the genetic code is the bearer of the 
three pairs of binary-oppositional attributes which are showed on Figure 2. One can see that for a 
determination of any of genetic letters inside the genetic alphabet it is enough to indicate two 
from thesethree kinds of the mentioned binary-oppositional attributes. For example let us take 
the first two kinds of the binary-oppositional attributes from Figure 2. Let us mark each genetic 
letter with the amino-mutating property by the symbol “+1” (such genetic letter is amino from 
the viewpoint of its radical content), and each genetic letter without this property by the symbol 
“-1” (such genetic letter is keto from the viewpoint of its radical content). Let us mark else each 
pyrimidine by the symbol “+i” and each purine by the symbol “-i”.Figure 9 shows what kind of 
pairs of these symbols (and of these attributes) determines each genetic letter. 

 +i -i 
+1 C A 
-1 T G 

 
Figure 9. The individual determination of each genetic letter by means of the individual  
pair of the attributes (explanation in text) 
 
So, each genetic letter can be considered as a 2-parametric object inside the genetic 

alphabet. In view of this we put forward the following working hypothesis: one can reveal useful 
knowledge in mathematical bioinformatics (or in mathematical modeling of genetic systems) if 
each of the genetic letters is interpreted in the field of matrix genetics as a relevant                        
2-dimensional complex number:  

 
                                C = 1+i, A = 1-i, T = -1+i, G = -1-i.                                   (3) 
 
The author has received some interesting results in matrix genetics on the base of this 

hypothesis (or of this numeric approach). One of them is a natural presentation of some families 
of genetic matrices as families of unitary matrices. This result seems to be interesting from the 
viewpoint of importance of unitary symmetries in theoretical physics [Lichtenberg, 1978; Louck, 
2008; Rumer, Fet, 1970]. 
 How many (2x2)-matrices can be constructed under the condition that each row and each 
column of each matrix contains only those genetic letters that belong to one of the mentioned 
binary-oppositional attributes (amino-keto and pyrimidine-purine)? In other words, each row and 
each column of such matrices should consist of the pairs C-A, C-T, G-A, G-T only. This 



condition is identical with the condition that such matrices should contain complementary pairs 
of the letters C-G and A-T along their diagonals (this condition exists already in the previous 
paragraph 7 about genetic projectors). One can check that only 8 symbolic matrices P[CATG], 
P[CTAG], P[GATC], P[GTAC],P[ACGT], P[TCGA], P[AGCT], P[TGCA] on Figure 10 satisfy this condition.  
 

 
P[CATG] = 
 
 
P[CTAG] = 

 
 
P[GATC] = 

C  A 
T  G 

 
à 

 
W1 = (1+i)*8-0.5* 

(1+i)     (1-i)  
(-1+i) (-1-i) 

 
, det(W1) =1 

    
C  T 
A  G 

 
à 

 
W2 = (1+i)*8-0.5* 

(1+i)   (-1+i) 
(1-i)    (-1-i) 

 
, det(W2) =1 

     
G A 
T  C 

 
à 

 
W3 = (1+i)*8-0.5* 

(-1-i)    (1-i) 
(-1+i)   (1+i) 

 
, det(W3) = 1 

      
 

P[GTAC] = 
G  T 
A  C 

 
à 

 
W4 = (1+i)*8-0.5* 

(-1-i)   (-1+i) 
(1-i)    (1+i) 

 
, det(W4) = 1 

      
 

P[ACGT] = 
A  C 
G  T 

 
à 

 
W5 = (1+i)*8-0.5* 

(1-i)    (1+i) 
(-1-i)   (-1+i) 

 
, det(W5) = -1 

      
 

P[TCGA] = 
T  C 
G  A 

 
à 

 
W6 = (1+i)*8-0.5* 

(-1+i)   (1+i)  
(-1-i)    (1-i)  

 
, det(W6) = -1 

      
 

P[AGCT] = 
A  G 
C  T 

 
à 

 
W7 = (1+i)*8-0.5* 

(1-i)    (-1-i) 
(1+i)   (-1+i) 

 
, det(W7) = -1 

      
 

P[TGCA] = 
T  G 
C  A 

 
à 

 
W8 = (1+i)*8-0.5* 

(-1+i)   (-1-i)  
(1+i)    (1-i) 

 
, det(W8) = -1 

 
Figure 10. The algorithmic presentation of the eight symbolic genomatrices P[CATG],  
P[CTAG], P[GATC], P[GTAC], P[ACGT], P[TCGA], P[AGCT], P[TGCA] in the form of  
numeric matrices Wk (k=1, 2, …., 8), which are unitary matrices. 
 

Let us replace symbols C, A, T, G in these 8 matrices by means of their complex presentations 
from expressions (3). Additionally each numeric matrix is normalized by means of its 
multiplication with the factor (1+i)*8-0.5 to provide the value ±1 for the matrix determinant. 
Figure 10 shows the result of this action in a form of numeric matrices. 

By definition a unitary matrix is a complex (n*n)-matrix W satisfying the condition 
 
                                     W*Ŵ = Ŵ*W = En                                                          (4)             

 
Where En is the identity matrix in n dimensions and Ŵ is the conjugate transpose of W (also 
called the Hermitian adjoint). One can check that all eight matrices Wk (k = 1, 2, …., 8) on 
Figure 10 satisfy the condition (4). So they are unitary matrices. 

Determinants of the first four matrices W1, W2, W3, W4 are equal to “+1”. Determinants 
of the last four matrices W5, W6, W7, W8 are equal to “-1”. Each of the first four matrices W1, 
W2, W3, W4 is the basis of the cyclic group of unitary transformations (Wm)s where m = 1, 2, 3, 4 
and “s” is integer number. The period of these cyclic groups is equal to 4: (Wm)S = (Wm)S+4. 
Each of the last four matrices W5, W6, W7, W7 is the basis of the cyclic group of unitary 
transformations (Wn)s where n = 5, 6, 7, 8 and “s” is integer number. The period of these cyclic 
groups is equal to 2: (Wn)S = (Wn)S+2. 



It is known that Kronecker product of unitary matrices is creating a new unitary matrix. 
Different Kronecker products of all these 8 unitary matrices Wk (k = 1, 2, …., 8) on Figure 10 
create new unitary matrices. For example each matrix Wk

(3) is the unitary (8*8)-matrix. Each 
family of (Wk

(3))s, where s is integer number, gives a cyclic group of unitary transformations 
also. 

Some variants of permutations of genetic elements in genetic matrices lead to new unitary 
genetic matrices by analogical algorithm. These new unitary genomatrices are generating their 
new cyclic groups of unitary transformations. 

It should be noted that the idea of presentation of the genetic letters in a form of complex 
numbers is not the new idea. For example, a presentation of genetic letters by means of complex 
numbers was made in the work (Cristea, 2005). But our approach has one very important aspect: 
we use such presentation for matrix analysis of ensemble of genetic multiplets. In the result the 
connection of the genetic code with unitary symmetries was discovered. Such matrix approach 
was not done by other authors as we know. 

In the beginning of this section we have taken the pair of binary-oppositional attributes 
“amino-keto” and “pyrimidine-purine” to construct Figure 9 with the expression (3). But one can 
take another pair of the binary-oppositional attributes from Figure 2, for example the attribute 
“amino-keto” and the attribute “two hydrogen bonds – three hydrogen bonds”. By analogy in this 
case one can make another presentation of the genetic letters in a form of complex numbers to 
consider another genetic (2*2)-matrices [С  A; G  T], [A  C; T  G], etc. where the pyrimidine       
C-T belong to one matrix diagonal and the purine A-G belong to another matrix diagonal. It is 
obvious that analogical unitary matrices are generated in this case. We do not consider such 
cases separately because they are identical to the previous case in general from the formal 
viewpoint. 

 
    9. About complementary palindromes, reproductions and the Rademacher genomatrices 

 
 One of important problems in molecular genetics is the problem of “complementary 
palindromes” in nucleotide sequences. In linguistics the notion “palindrome” means a rowthat is 
read identically in both directions (the words civic, radar, level are examples of linguistic 
palindromes). In genetics the notion “complementary palindrome” is important. By definition, a 
complementary palindrome is a row of DNA or RNA that becomes a simple palindrome if each 
symbol in one of halves of this row is replaced by its complementary symbol (in DNA the 
complementary pairs are A-T and C-G, and in RNA complementary pairs are A-U and C-G). For 
example CTCGCGAG is a complementary palindrome in DNA. Many complementary 
palindromes exist in DNA sequences. For example the fourth chromosome of the genome 
Arabidopsis th. contains the complementary palindrome TGTCGATCGACA which is repeated 
194 times there [Gusev et al, 2009]. The problem of complementary palindromes in genetics is 
considered in many works (see for example [Gusev et al., 2009; Gusfield, 1999]).  

This phenomenological problem has some unexpected relations with mathematical 
properties of the genomatrices [C T; A G](2) and [C T; A G](3) (Figure 1). On the base of these 
relations, mathematical models can be developed for a description of realizations of                      
2n-dimensional vectors of the complementary-palindromic type together with a description of      
2n-reproductions of such 2n-dimensional vectors. Let us consider these relations more attentively. 

Figure 11 shows the genomatrix [C T; A G](3) of 64 triplets where all the triplets with 
strong roots CC, CT, CG, AC, TC, GC, GT, GG are marked by black color. Figure 11 shows 
also the genomatrix [C A; T G](2) of 16 duplets where all of these “strong” duplets CC, CT, CG, 
AC, TC, GC, GT, GG are marked by black color as well. From the viewpoint of the black-and-
white mosaics, each row of these genomatrices corresponds to one of Rademacher functions 
which contains only elements “+1” and “-1”. Figures 11 shows the Rademacher representations 
R4 and R8 of these genomatrices also. 

 



 
[C T; A G](2)= 

 

CC CT TC TT  1 1 1 -1 
CA CG TA TG ;         R4 = -1 1 -1 -1 
AC AT GC GT  1 -1 1 1 
AA AG GA GG  -1 -1 -1 1 

 
 

CCC CCT CTC CTT TCC TCT TTC TTT 
CCA CCG CTA CTG TCA TCG TTA TTG 
CAC CAT CGC CGT TAC TAT TGC TGT 
CAA CAG CGA CGG TAA TAG TGA TGG 
ACC ACT ATC ATT GCC GCT GTC GTT 
ACA ACG ATA ATG GCA GCG GTA GTG 
AAC AAT AGC AGT GAC GAT GGC GGT 
AAA AAG AGA AGG GAA GAG GGA GGG 

 

 

 1 1 1 1 1 1 -1 -1 
 1 1 1 1 1 1 -1 -1 
 -1 -1 1 1 -1 -1 -1 -1 

R8= -1 -1 1 1 -1 -1 -1 -1 
 1 1 -1 -1 1 1 1 1 
 1 1 -1 -1 1 1 1 1 
 -1 -1 -1 -1 -1 -1 1 1 
 -1 -1 -1 -1 -1 -1 1 1 

 
Figure 11  The genomatrices [C T; A G](2) (in the upper row) and [C T; A G](3) and their  
Rademacher representations R4 and R8 are shown. Black cells contain strong duplets 
CC, CT, CG, AC, TC, GC, GT, GG and triplets with these strong roots. Each column in   
R4 and R8 corresponds to one of Rademacher functions. 
 
These Rademacher genomatrices R4 and R8 possess interesting properties. Firstly, their 

actions on the arbitrary 4-dimensional and 8-dimensional vectors V4 = [a0  a1  a2  a3] and            
V8 = [a0 a1 a2 a3 a4 a5 a6 a7] correspondingly are leading to new vectors in a form of 
complementary palindromes (Figure 12). Each of these new vectors becomes a simple 
palindrome by means of inversion of signs of all components in one of two its halves. In the case 
of 8-dimensional vectors on Figure 12, new palindromic vectors possess an additional 
peculiarity: each pair of adjacent members in such 8-dimensional palindromic vectors contains 
identical components. 

 
4-dimensional 
vectors 

Numeric 
example 

R4*[3, -8, 5, 7]T = [-7,  -23,  23,  7]T 

 
General case  R4*[a0, a1, a2, a3]T =  

[a0+a1+a2-a3, -a0+a1-a2-a3, a0-a1+a2+a3,-a0-a1-a2+a3]T 
8-dimensional 
vectors 

Numeric 
example  

R8*[3   -8   5  7 6 9 1 -4]T =  
= [252555-5-5-25-25]T 

 
General case  

R8*[a0 a1 a2 a3 a4 a5 a6a7]T = [a0+a1+a2+a3+a4+a5-a6-a7,  
a0+a1+a2+a3+a4+a5-a6-a7, -a0-a1+a2+a3-a4-a5-a6-a7,  
-a0-a1+a2+a3-a4-a5-a6-a7,  a0+a1-a2-a3+a4+a5+a6+a7,  a0+a1-a2-
a3+a4+a5+a6+a7, -a0-a1-a2-a3-a4-a5+a6+a7,  
-a0-a1-a2-a3-a4-a5+a6+a7]T 

 
Figure12. Transformations of arbitrary 4-dimensional and 8-dimensional vectors into 

vectors of the complementary-palindrome type. Complementary pairs of components in both 
halves of the  vectors of the complementary-palindrome type are marked by identical colors. The 
symbol T over vectors means transpose of these vectors. 

 
     The second heuristic property of such Rademacher genomatrices R4 and R8 is the following. 
A repeating action of the genomatrix R4 on any complementary-palindrome vector                       
[a0,  a1, -a1,  -a0]T generates a dichotomous reproduction of this vector:  
 

                           R4*[a0, a1, -a1,  -a0]T = 2*[a0, a1, -a1,  -a0]                                     (5) 
 



It can be used as a model of inherited dichotomous reproductions of biological cells in a 
course of mitosis when genetic materials are reproduced in dichotomous manner. One can 
mention else that each column of the Rademacher genomatrix R4 is a complementary-
palindrome vector itself. By this reason the exponentiation of this genomatrix generates its 
dichotomic reproduction also: R4

2 = 2*R4. 
        A similar situation exists for the Rademacher genomatrix R8:  
                           R8*(R8*[a0 a1 a2 a3 a4 a5 a6a7]T) = 4*R8*[a0 a1 a2 a3 a4 a5 a6 a7]T                   (6) 
 

It can be used as a model of inherited tetra-reproductions of germ cells in a course of 
meiosis when genetic materials are reproduced in tetra-reproduction manner (four germ cells 
arise from one germ cell in a course of meiosis). Each column of the Rademacher genomatrix R8 
is a complementary-palindrome vector itself. By this reason the exponentiation of this 
genomatrix generates its tetra-reproduction also: R8

2 = 4*R8. 
The author’s works [Petoukhov, 2011, 2012a] describes other interesting properties of 

these Rademacher genomatrices R4 and R8 which are close connected with special types of                 
4-dimensional and 8-dimensional hypercomplex numbers well-known in physics: split-
quaternions and bi-split-quaternions by J.Cockle. 
 
 

10 Transformations of the genomatrix [C T; A G](3) by removing separate positions  
      in the triplets 
 
The mosaic genomatrix [C T; A G](3) (Figure 11) possesses interesting properties relative 

to removing separate positions in its triplets (this method provides a positional convolution of 
each triplet into a corresponding duplet). This operation leads to new mosaic genomatrices 
(Figures 13-15) where the strong roots (the duplets CC, CT, CG, AC, TC, GC, GT, GG) are 
again marked by black color and the weak roots (CA, AA, AT, AG, TA, TT, TG, GA) are 
marked by white color. Removing the first positions of triplets in [C T; A G](3) leads to the (8*8)-
genomatrix of duplets (Figure 13, left) where each column corresponds to one of Rademacher 
functions relative to its black-and-white mosaic. Removing the second positions of triplets in [C 
T; A G](3) leads to the (8*8)-genomatrix of duplets (Figure 14, left) where each column 
corresponds again to one of Rademacher functions relative to its black-and-white mosaic. 
Removing the third positions of triplets in [C T; A G](3) leads to the (8*8)-genomatrix of duplets 
(Figure 15, left) where each column corresponds again to one of Rademacher functions relative 
to its black-and-white mosaic. 

The Rademacher representations R1, R2 and R3 (Figure 13-15, right sides) of these new 
genomatrices and the Rademacher representation R8 of the initial genomatrix [C T; A G](3) 
possess some similar properties. For example, the exponentiation of these genomatrices R8, R1, 
R2 and R3 generates their tetra-reproduction: R8

2=4*R8, R12=4*R1, R22=4*R2 and R32=4*R3. 
The dyadic-shift decomposition of each of these Rademacher genomatrices R1, R2 and R3 
generates an individual set of 8 sparse matrices; each of these sets is closed relative to 
multiplication and its multiplication table is identical to the multiplication table of 8-dimensional 
hypercomplex numbers which are well-known in mathematics and physics under the name           
bi-split-quaternions by J.Cockle (see details in our works [Petoukhov, 2011, 2012a]). 
 



CC CT TC TT CC CT TC TT   1 1 1 -1 1 1 1 -1 
CA CG TA TG CA CG TA TG   -1 1 -1 -1 -1 1 -1 -1 
AC AT GC GT AC AT GC GT   1 -1 1 1 1 -1 1 1 
AA AG GA GG AA AG GA GG   -1 -1 -1 1 -1 -1 -1 1 
CC CT TC TT CC CT TC TT   1 1 1 -1 1 1 1 -1 
CA CG TA TG CA CG TA TG   -1 1 -1 -1 -1 1 -1 -1 
AC AT GC GT AC AT GC GT   1 -1 1 1 1 -1 1 1 
AA AG GA GG AA AG GA GG   -1 -1 -1 1 -1 -1 -1 1 

 
Figure 13. Left: the transformation of the genomatrix [C T; A G](3) (Figure 11) by means 

of removing the first position in each triplets. Right: the Rademacher form R1 of this new 
genomatrix (black and white cells contain elements +1 and -1 correspondingly). Explanations in 
the text. 

CC CT CC CT TC TT TC TT   1 1 1 1 1 -1 1 -1 
CA CG CA CG TA TG TA TG   -1 1 -1 1 -1 -1 -1 -1 
CC CT CC CT TC TT TC TT   1 1 1 1 1 -1 1 -1 
CA CG CA CG TA TG TA TG   -1 1 -1 1 -1 -1 -1 -1 
AC AT AC AT GC GT GC GT   1 -1 1 -1 1 1 1 1 
AA AG AA AG GA GG GA GG   -1 -1 -1 -1 -1 1 -1 1 
AC AT AC AT GC GT GC GT   1 -1 1 -1 1 1 1 1 
AA AG AA AG GA GG GA GG   -1 -1 -1 -1 -1 1 -1 1 

 
Figure 14. Left: the transformation of the genomatrix [C T; A G](3) (Figure 11) by means 

of removing the second position in each triplets. Right: the Rademacher form R2 of this new 
genomatrix (black and white cells contain elements +1 and -1 correspondingly). Explanations in 
the text. 

CC CC CT CT TC TC TT TT   1 1 1 1 1 1 -1 -1 
CC CC CT CT TC TC TT TT   1 1 1 1 1 1 -1 -1 
CA CA CG CG TA TA TG TG   -1 -1 1 1 -1 -1 -1 -1 
CA CA CG CG TA TA TG TG   -1 -1 1 1 -1 -1 -1 -1 
AC AC AT AT GC GC GT GT   1 1 -1 -1 1 1 1 1 
AC AC AT AT GC GC GT GT   1 1 -1 -1 1 1 1 1 
AA AA AG AG GA GA GG GG   -1 -1 -1 -1 -1 -1 1 1 
AA AA AG AG GA GA GG GG   -1 -1 -1 -1 -1 -1 1 1 

 
Figure 15. Left: the transformation of the genomatrix [C T; A G](3) (Figure 11) by means 

of removing the third position in each triplets. Right: the Rademacher form R3 of this new 
genomatrix (black and white cells contain elements +1 and -1 correspondingly). Explanations in 
the text. 
 

The stability of algebraic properties of these genomatrices adds materials to the author’s 
idea about importance of “positional languages” for molecular genetics or, in other words, to the 
idea of positioning of the binary languages in genetic sequences (we are talking about reading 
each of the three positions inside triplets based on one of the  three pairs of binary sub-alphabets 
from Figure 2) [Petoukhov S.V., 2003, p. 14; 2008; 2012a; 2012b; Petoukhov, He, 2010]. 

This method of a positional convolution of triplets and other n-plets (or oligonucleotides) 
will be used in the next section to construct fractal genetic nets (FGN) as a new tool to reveal 
hidden rules of long nucleotide sequences. 

 
 



11 Fractal genetic nets and the Symmetry Principles of long nucleotide sequences 
 
 On the base of his results in the field of matrix genetics, the author proposes a new notion 
“fractal genetic nets” (FGN) which is a useful tool to study long genetic sequences, first of all, to 
study symmetrical properties of long nucleotide sequences. In general case each variant of FGN 
is constructed by means of the author’s “method of a positional convolution of long genetic 
sequences” to get a bunch of long sequences, each of which, respectively, shorter than the 
original sequence. In the particular case, this method lies in the positional convolution of long 
sequences of triplets through the removal or retention of individual positions (items) in each 
triplet by an analogy to the steps in the previous section (Figures 13-15). 

In literature sources, long genetic sequences are termed those that contain no less that 
50.000 nucleotides (see for example [Yamagishi, Herai, 2011]). In results of our preliminary 
researches of long nucleotide sequences of organisms of various taxonomic types, we reveal 
evidences of the author’s hypothesis: hidden regularities of long genetic sequences are connected 
with fractal genetic nets (FGN); studying of long genetic sequences by means of using FGN 
allows discovering new hidden rules of living nature. 

Let us explain a construction of FGN of various types on an example of FGN for 
sequences of triplets (Figure 16). Three positions in each triplet are numerated by numbers 0, 1 
and 2 correspondingly. At the first level of a convolution, an initial long sequence S0 of triplets is 
transformed by means of a positional convolution into three new sequences of nucleotides S1/0, 
S1/1, S1/2, each of which is shorter in 3 times in comparison with the initial sequence (numerator 
of the index in this notation of sequences shows the level of the convolution, and the 
denominator - the position of the triplets, which is used for the convolution): the sequence S1/0 
includes one by one all the nucleotides that are in the initial position "0" of triplets of the original 
sequence S0; the sequence S1/1 includes one by one all the nucleotides that are in the middle 
position "1" of triplets of the original sequence S0; the sequence S1/2 includes one by one all the 
nucleotides that are in the last position "2" of triplets of the original sequence S0. At the final 
stage of the first level of the positional convolution, each of the sequences of nucleotides S1/0, 
S1/1, S1/2 is represented as a sequence of triplets where three positions inside each triplets are 
numerated again by numbers 0, 1 and 2. To construct the second level of the convolution, each 
of the sequences S1/0, S1/1, S1/2 is transformed by means of the same positional convolution in 
three new sequences: S1/0 is convolved in S2/00, S2/01, S2/02; S1/1 – in S2/10,S2/11, S2/12; S1/2 – in S2/20, 
S2/21, S2/22. The third level and subsequent levels of the convolution are constructed by analogy to 
form a multi-level net of sequences of nucleotides, which is termed "the fractal genetic net for  
the triplet convolution" or briefly "FGN-3" (Figure 16). 
 

  
 

        Figure 16. The scheme of the fractal genetic net (FGN-3) for a sequence of triplets 



 
This FGN possesses a fractal-like character if the numeration of positions is only taken 

into account: each of long sequences of this FGN can be taken as an initial sequence to form a 
similar genetic net on its basis (Figure 17). In general case, the FGN can be built not only for 
triplets, but also for other n-plets (n = 2, 4, 5, ...) or oligonucleotides by means of a repeated 
positional convolution of each of sequences from the previous level into "n" sequences of the 
next level of the convolution. In this way one can built FGN-2, FGN-4, FGN-5, etc. for n=2, 3, 
4, 5,… correspondingly. (Each of these FGN-2, FGN-3, FGN-4, FGN-5, etc. is a tree, but all of 
them form a net of separate trees;  in a wide sense, FGN is the complete set of such separate 
trees). But this article describes some our results only for the FGN-3. 

 

 
Figure 17. The fractal scheme of the triple branching in the case of the FGN-3 

 
To test the author's hypothesis that structures of long nucleotide sequences of different 

organisms are connected with fractal genetic nets (first of all with FGN-3), we  analyze an 
implementation of the known «Symmetry Principle» [Yamagishi, Herai, 2011, p.2] for long 
nucleotide sequences of different levels of a positional convolution in the fractal genetic net for 
the triplet convolution (FGN-3). Let us remind briefly about this Symmetry Principle which was 
studied or described in many publications [Bell, Forsdyke, 1999;  Chargaff, 1971, 1975; Dong, 
Cuticchia, 2001; Forsdyke, 2002; Forsdyke, Bell, 2004; Kong, et al. 2009; Mitchell, Bridge, 
2006; Prabhu, 1993; Sueoka, 1999; Yamagishi, Herai, 2011].  

The Chargaff's first parity rule speaks that in any double-stranded DNA segment, the 
quantities (or frequencies) of adenine and thymine are equal, and so are the frequencies of 
cytosine and guanine [Chargaff, 1950]. This rule was used by Watson and Crick to support their 
famous DNA double-helix structure model [Watson & Crick, 1953]. Chargaff also perceived that 
the parity rule approximately holds in the single-stranded DNA segment. This last rule is known 
as Chargaff’s second parity rule (CSPR), and it has been confirmed in several organisms 
[Mitchell & Bride, 2006]. Originally, CSPR is meant to be valid only to mononucleotide 
frequencies (that is quantities of monoplets) in the single-stranded DNA. “But, it occurs that 
oligonucleotide frequencies follow a generalized Chargaff’s second parity rule (GCSPR) where 
the frequency of an oligonucleotide is approximately equal to its complement reverse 
oligonucleotide frequency [Prahbu, 1993]. This is known in the literature as the Symmetry 
Principle” [Yamagishi, Herai, 2011, p. 2]. The work [Prahbu, 1993] shows the implementation 
of the Symmetry Principle in long DNA-sequences for cases of complementary reverse n-plets 
with n = 2, 3, 4, 5 at least. 

In our article we use two different notions of complementary oligonucleotides (or              
n-plets): 1) complementary oligonucleotides in a traditional sense (for example ACGTG and 
TGCAC are the pair of complementary oligonucleotides in a traditional sense);                           
2) complementary reverse oligonucleotides or briefly CR-oligonucleotides or reverse 
complements (for example ACGTG and CACGT are the pair of CR-oligonucleotides). The 
mentioned Symmetry Principle has been revealed for pairs of CR-oligonucleotides. Taking this 
into account we began testing the author’s hypothesis by means of analyzing frequencies (or 
quantities) of all variants of pairs of CR-oligonucleotides in long DNA-sequences of different 
organisms at different levels of their FGN. We test frequencies of n-plets in the FGN-3 with n = 



1, 2, 3, 4, 5 only because of our computer limitations, but we suppose that our described results 
for FGN-3 hold true also for n > 5. Initial nucleotide sequences for testing are taken from 
http://www.ncbi.nlm.nih.gov/. To test the author's hypothesis we use a special software written 
by V.I.Svirin  on the basis of the computer language Python under the technical project by the 
author. 

In the result of our preliminary studies we have revealed the following: 1) the Symmetry 
Principle for pairs of CR-oligonucleotides is realized in each of long nucleotide sequences at 
different levels of the convolution in FGN-3 (the length of oligonucleotides or n-plets under 
consideration is equal to n = 1, 2, 3, 4, 5 at least); 2) a series of new Symmetry Principles exists 
in those initial long nucleotide sequences where the famous Symmetry Principle for pairs of CR-
oligonucleotides is performed; 3) each of these new Symmetry Principles is performed for         
n-plets in each of long nucleotide sequences at different levels of the convolution in FGN-3 (n = 
1, 2, 3, 4, 5 at least). 

Let us take for example the long nucleotide sequence of Mycoplasma crocodyli MP145 
chromosome, complete genome (NCBI Reference Sequence: NC_014014.1 
http://www.ncbi.nlm.nih.gov/nuccore/294155300). This sequence contains 934379 nucleotides. 
Figure 18 shows realisations of the known Symmetry Principle (we'll name it as the Symmetry 
Principle №1) in the 13 sequences of the first three levels of convolution in the FGN-3 of this 
genome. It displays the number of occurences of 32 triplets (AAA, AAC, AAG, AAT, ACA, 
ACC, ACG, ACT, AGA, AGC, AGG, ATA, ATC, ATG, CAA, CAC, CAG, CCA, CCC, CCG, 
CGA, CGC, CTA, CTC, GAA, GAC, GCA, GCC, GGA, GTA, TAA, TCA) and their 32          
CR-triplets (TTT, GTT, CTT, ATT, TGT, GGT, CGT, AGT, TCT, GCT, CCT, TAT, GAT, 
CAT, TTG, GTG, CTG, TGG, GGG, CGG, TCG, GCG, TAG, GAG, TTC, GTC, TGC, GGC, 
TCC, TAC, TTA, TGA) in the long sequences S0, S1/0, S1/1,  S1/2, S2/00, S2/01, S2/02, S2/10, S2/11, 
S2/12, S2/20, S2/21, S2/22 at the first three levels of the FGN-3 (a limited volume of the article 
doesn’t allow showing other levels of this FGN).  

The straight line in each frame is of slope 1 (it is a bisector of the coordinate angle). Each 
dot in a frame represents one pair “triplet and CR-triplet”; its coordinate X shows number of 
occurences ( or the frequence) of the triplet, and its coordinate Y shows number the frequence of 
its CR-triplet on the same strand of the sequence. Each frame contains all 32 pairs «triplet and its 
CR-triplet». The dots agglutinate at the line of slope 1, demonstrating that amounts of 
occurrences (or frequences) of two members of  each of 32 pairs «triplet and its CR-triplet» are 
aproximately equal in each of the sequences at each of the levels of convolution in the FGN-3. It 
means that the Symmetry Principle №1 is performed for each of these sequences. 
 

 



   

   

   

   

Figure 18. Realizations of the Symmetry Principle №1 in the long sequences S0, S1/0, S1/1,  S1/2, 
S2/00, S2/01, S2/02, S2/10, S2/11, S2/12, S2/20, S2/21, S2/22 at the first three levels of the FGN-3 for 
Mycoplasma crocodyli MP145 chromosome, complete genome (NCBI Reference Sequence: 
NC_014014.1 http://www.ncbi.nlm.nih.gov/nuccore/294155300). The initial sequence S0 
contains 934379 nucleotides. 
 

On       this      basis        the          author          notes            existence         of  
the generalized Symmetry Principle № 1:        
- in long nucleotide sequences at different levels of convolution in FGN-3, 

oligonucleotide frequencies follow a generalized Chargaff’s second parity rule where the 
frequency of each oligonucleotide is approximately equal to its complement reverse 
oligonucleotide frequency.  
 

Now let us describe new Symmetry Principles discovered by us for long nucleotide 
sequences in a connection with obtained results of matrix genetics.  



The Symmetry Principle № 2 (concerning to FGN): the frequency of each 
oligonucleotide is approximately the same in all the long nucleotide sequences of each of levels 
of FGN-3.  

Figure 19 shows an example of frequencies of the triplet ACG in 40 long nucleotide 
sequences S0, S1/0, S1/1,  S1/2, S2/00, S2/01, S2/02, S2/10, S2/11, S2/12, S2/20, S2/21, S2/22, ….., S3/221, S3/222 
at the first four levels of the FGN-3 of the same initial sequences as on Figure 18. 

 
 
 
 
 

 
 
 
 
 
 

 

Figure 19. Frequencies of the triplet ACG in 40 long nucleotide sequences S0, S1/0, S1/1,  
S1/2, S2/00, S2/01, S2/02, S2/10, S2/11, S2/12, S2/20, S2/21, S2/22, ….., S3/221, S3/222 at the first four levels of 
the FGN-3 of Mycoplasma crocodyli MP145 chromosome, complete genome (NCBI Reference 
Sequence: NC_014014.1 http://www.ncbi.nlm.nih.gov/nuccore/294155300). Coordinates X 
show the 40 sequences and coordinate Y show appropriate frequencies of the  triplet ACG in 
them. 

 
Figure 20 shows examples of frequencies of all 64 triplets in 13 long nucleotide 

sequences at the first three levels of FGN-3 of the same genome. 
 

 S0 S1/0 S1/1 S1/2 S2/00 S2/01 S2/02 S2/10 S2/11 S2/12 S2/20 S2/21 S2/22 

AAA 19832 5786 5679 5768 1975 1944 1944 1986 1899 1952 1954 1935 1876 

AAC 6246 1709 1707 1643 550 560 567 587 543 557 504 531 534 

AAG 7087 1859 1783 1940 607 619 651 607 630 611 615 679 649 

AAT 15037 5320 5352 5428 1784 1685 1769 1770 1758 1743 1757 1775 1742 

ACA 5049 1527 1564 1635 542 513 546 492 566 521 537 517 519 

ACC 2363 747 755 747 233 253 266 241 273 253 231 203 236 

ACG 1029 660 663 684 214 205 197 175 210 208 228 203 203 

ACT 4714 1713 1745 1702 526 548 553 536 568 544 552 537 506 

AGA 5272 1784 1688 1737 657 635 640 631 600 598 691 644 638 

AGC 2754 590 623 586 226 216 200 220 199 181 198 223 204 

AGG 2150 973 880 912 293 294 322 292 259 287 314 288 307 

AGT 4713 1700 1704 1820 530 595 543 513 492 523 562 549 543 

ATA 11126 4952 5051 4886 1688 1629 1637 1671 1655 1659 1706 1635 1606 

ATC 5250 1619 1570 1568 507 537 511 518 527 583 531 522 549 

ATG 5499 1450 1488 1505 494 547 582 510 529 538 551 514 539 

ATT 15079 5397 5390 5419 1797 1802 1835 1816 1832 1799 1857 1745 1726 



CAA 7427 1620 1615 1661 526 538 568 565 502 508 540 561 529 

CAC 1872 700 746 733 225 236 201 255 262 243 222 238 224 

CAG 2105 553 653 605 212 206 211 205 203 221 197 203 249 

CAT 5375 1473 1497 1388 547 546 519 548 497 539 543 507 528 

CCA 2750 727 712 664 235 248 252 267 252 246 218 255 238 

CCC 569 522 622 513 181 166 170 188 198 183 164 196 174 

CCG 681 336 390 326 81 113 84 105 109 118 94 109 108 

CCT 2181 887 945 885 292 277 293 323 302 307 281 292 286 

CGA 1171 635 607 600 189 208 178 196 207 194 204 208 200 

CGC 508 321 341 319 106 113 89 104 101 107 109 116 94 

CGG 693 402 365 366 124 93 102 121 137 105 85 97 109 

CGT 989 671 663 684 214 175 194 199 189 215 164 204 190 

CTA 4326 1664 1659 1562 545 515 520 526 532 542 543 524 523 

CTC 1786 832 893 841 310 306 295 289 306 316 283 312 279 

CTG 2115 577 647 636 215 236 206 207 172 211 196 173 222 

CTT 6917 1950 1913 1785 635 646 641 684 653 577 617 614 632 

GAA 7190 1823 1801 1812 651 689 675 640 610 655 602 654 660 

GAC 1404 585 598 611 208 204 178 195 223 208 189 201 185 

GAG 1820 932 833 930 289 289 274 284 275 295 291 291 315 

GAT 5225 1664 1563 1555 555 530 523 488 507 534 577 557 564 

GCA 2974 572 580 631 228 195 197 241 210 196 196 198 227 

GCC 710 276 353 288 97 91 110 102 92 118 106 99 106 

GCG 497 377 321 361 113 97 121 109 108 109 103 104 102 

GCT 2973 622 582 585 227 233 218 181 227 192 207 178 198 

GGA 2330 958 875 888 283 302 296 297 272 316 308 318 317 

GGC 676 286 275 283 115 110 100 112 112 108 93 104 97 

GGG 616 551 546 555 185 200 193 187 170 200 215 174 209 

GGT 2446 733 755 728 246 240 281 232 249 246 229 243 227 

GTA 3636 1680 1606 1709 516 537 532 518 544 501 513 546 555 

GTC 1374 601 577 578 199 198 218 194 217 226 202 203 190 

GTG 2083 711 720 777 265 257 238 219 226 237 244 239 243 

GTT 6587 1694 1736 1770 575 541 553 560 559 530 551 577 574 

TAA 13334 5401 5418 5430 1732 1708 1678 1693 1760 1717 1762 1723 1839 

TAC 3369 1625 1685 1624 520 528 509 571 571 535 492 554 501 

TAG 4368 1685 1596 1641 498 538 556 475 505 561 587 544 572 

TAT 11019 4895 4950 4973 1635 1730 1667 1648 1672 1649 1711 1695 1767 

TCA 6993 1542 1679 1586 549 514 546 542 559 575 573 542 570 



TCC 2302 872 904 854 291 276 293 340 353 277 295 316 283 

TCG 1240 681 662 669 183 201 204 193 204 206 220 212 214 

TCT 5710 1794 1866 1798 639 645 600 646 634 658 647 669 632 

TGA 6550 1642 1533 1602 577 570 560 530 557 525 568 556 590 

TGC 2790 616 610 611 190 233 201 219 219 213 205 191 194 

TGG 2658 720 689 796 222 285 245 246 241 240 239 293 242 

TGT 5123 1727 1583 1619 585 568 547 565 592 546 531 536 566 

TTA 13519 5470 5525 5585 1755 1753 1760 1765 1793 1802 1733 1777 1758 

TTC 7131 1839 1864 1809 644 631 659 669 660 672 632 680 571 

TTG 7918 1700 1745 1689 576 579 583 563 562 559 541 553 612 

TTT 20219 5886 5876 5921 1997 1929 2004 2034 1960 2010 1995 1969 1963 

 
Figure 20. The table of frequencies of 64 triplets in long nucleotide sequences S0, S1/0, S1/1,  S1/2, 
S2/00, S2/01, S2/02, S2/10, S2/11, S2/12, S2/20, S2/21, S2/22 at the first three levels of FGN-3 of 
Mycoplasma crocodyli MP145 chromosome, complete genome (NCBI Reference Sequence: 
NC_014014.1 http://www.ncbi.nlm.nih.gov/nuccore/294155300). 

 
The Symmetry Principle № 3: for each of long nucleotide sequences at each level of 

FGN-3 the following rules hold true: sum of the frequencies of all the oligonucleotides, that 
begin with the letter A, approximately equal to the sum of the frequencies of all the 
oligonucleotides that begin with the letter T; sum of the frequencies of all the oligonucleotides, 
that begin with the letter C, approximately equal to the sum of the frequencies of all the 
oligonucleotides that begin with the letter T. 

In particularly, these rules hold true not only for long sequences at lower levels of FGN-3 
but also for an initial long sequence S0. Figure 21 illustrates the Symmetry Principle № 3 by 
examples of n-plets (n=2, 3, 4, 5) in sequences S0, S1/0,…, S2/22 of the first levels in FGN-3 of the 
same genome as on Figures 18-20. 
  

The total frequencies of the sets of duplets in sequences of FGN-3: 
 S0 S1/0 S1/1 S1/2 S2/00 S2/01 S2/02 S2/10 S2/11 S2/12 S2/20 S2/21 S2/22 
F(A) 169757 56674 56197 56747 19065 18857 18836 18764 18756 18713 18949 18815 18871 
F(T) 171420 57022 57247 57179 18870 18937 19067 19102 19155 19040 19161 19105 19083 
F(C) 62531 20763 21486 20600 6929 6903 6882 7113 7148 7178 6772 6900 6800 
F(G) 63471 21265 20794 21198 7044 7211 7123 6929 6849 6977 7026 7088 7154 

The total frequencies of the sets of triplets in sequences of FGN-3: 
 S0 S1/0 S1/1 S1/2 S2/00 S2/01 S2/02 S2/10 S2/11 S2/12 S2/20 S2/21 S2/22 
F(A) 113200 37786 37642 37980 12623 12582 12763 12565 12540 12557 12788 12500 12377 
F(T) 114243 38095 38185 38207 12593 12688 12612 12699 12842 12745 12731 12810 12874 
F(C) 41465 13870 14268 13568 4637 4622 4523 4782 4622 4632 4460 4609 4585 
F(G) 42541 14065 13721 14061 4752 4713 4707 4559 4601 4671 4626 4686 4769 

The total frequencies of the sets of 4-plets in sequences of FGN-3: 
 S0 S1/0 S1/1 S1/2 S2/00 S2/01 S2/02 S2/10 S2/11 S2/12 S2/20 S2/21 S2/22 
F(A) 84955 28475 27999 28493 9522 9391 9274 9342 9417 9434 9453 9379 9371 
F(T) 85573 28439 28601 28639 9531 9532 9624 9552 9570 9538 9663 9573 9555 
F(C) 31189 10286 10758 10270 3409 3438 3499 3573 3578 3594 3331 3423 3356 
F(G) 31867 10662 10504 10460 3492 3593 3557 3487 3389 3388 3507 3579 3672 

The total frequencies of the sets of 5-plets in sequences of FGN-3: 
 S0 S1/0 S1/1 S1/2 S2/00 S2/01 S2/02 S2/10 S2/11 S2/12 S2/20 S2/21 S2/22 
F(A) 67729 22626 22512 22788 7551 7506 7542 7491 7417 7431 7587 7445 7539 
F(T) 68688 22951 22918 22764 7620 7613 7684 7626 7668 7677 7619 7700 7534 



F(C) 25144 8242 8503 8217 2780 2762 2701 2851 2907 2849 2704 2785 2736 
F(G) 25304 8470 8356 8520 2812 2882 2836 2795 2771 2806 2853 2833 2954 

 
Figure 21. The illustration of the Symmetry Principle № 3 in the case of Mycoplasma 

crocodyli MP145 chromosome, complete genome (NCBI Reference Sequence: NC_014014.1 
http://www.ncbi.nlm.nih.gov/nuccore/294155300). Here F(A), F(T), F(C) and F(G) mean sum of 
the frequencies of oligonucleotides (or n-plets) that begin with the letters A, T, C or G 
correspondingly. The tables show the F(A) ≈ F(T) and F(C) ≈ F(G) for sets of n-plets (n=2, 3, 4, 
5) in each of long nucleotide sequences S0, S1/0, S1/1,  S1/2, S2/00, S2/01, S2/02, S2/10, S2/11, S2/12, S2/20, 
S2/21, S2/22 at the first three levels of FGN-3 of this genome.  
 
 One can note that each of 4 quadrants of the genomatrices [C T; A G](n)  (Figure 1) 
contain all oligonucleotides that begin with one of these 4 letters C, T, A or G. In these 
genomatrices each oligonucleotide and its complementary oligonucleotide are disposed inverse-
symmetrical relative to the centre of the appropriate matrix. In accordance with the Symmetry 
Principle № 3, the total frequencies of oligonucleotides in both quadrants along the main 
diagonal of these gemomatrices are approximately equal each other (F(C) ≈ F(G)); the total 
frequencies of oligonucleotides in both quadrants along the second diagonal of these 
gemomatrices are also approximately equal each other (F(A) ≈ F(T)).  
 An additional illustration of the Symmetry Principle № 3 is obtained from data about the 
whole human genome from the work [Perez, 2010]. This genome contains 2.843.411.612 
triplets. Figure 22 shows the total frequencies of sets of triplets that begin with one of the four 
letters A, C, G or T. 
 

The total frequencies of the sets 
of triplets that begin with A 

The total frequencies of the sets of 
triplets that begin with T 

f(ACC+ACT+ACA+ACG+ 
ATC+ATT+ATA+ATG+ 
AAC+AAT+AAA+AAG+ 
AGC+AGT+AGA+AGG)= 

839.827.642 

f(TGG+TGA+TGT+TGC+ 
TAG+TAA+TAT+TAC+ 
TTG+TTA+TTT+TTC+ 

TCG+TCA+TCT+TCC)= 
841.214.589 

 

The total frequencies of the sets 
of triplets that begin with C: 

The total frequencies of the sets of 
triplets that begin with G: 

f(CCC+CCT+CCA+CCG+ 
CTC+CTT+CTA+CTG+ 
CAC+CAT+CAA+CAG+ 

CGC+CGT+CGA+CGG) = 
581.026.275 

f(GGG+GGA+GGT+GGC+ 
GAG+GAA+GAT+GAC+ 
GCG+GTA+GTT+GTC+ 
GTG+GCA+GCT+GCC)= 

581.343.106 

Figure 22.  The  approximate equality of the total frequencies of sets of triplets that begin 
with letters A and T (upper table) and with letters C and G (bottom table) in the case of 
the whole human genome. Initial data about frequencies of separate triplets are taken 
from the work [Perez, 2010]. 
 
The Symmetry Principle № 3 speaks about pairs of complete sets of complementary 

olygonucleotides that begin with complementary letters (A=T and C=G). If one consider sub-sets 
of complementary oligonucleotides from these complete sets, the equality of their total 
frequences is violated, and this violation is the more the less scale of sub-sets is under  
consideration. For example, in the case of FGN-3 of long nucleotide sequences, the equality of 
the total frequencies of two sets of 4 pentaplets, which are disposed in two complementary 
(2*2)-sub-sub-quadrants of the matrix [C T; A G](5), is performed less accurately than the 



equality of the total frequencies of two sets of 16 pentaplets in two complementary (4*4)-sub-
quadrants in this matrix.  

  The author would like to mention about the additional Symmetry Principles № 4, which 
can be interpreted as simple consequences of the generalized Symmetry Principle № 1 and the 
Symmetry Principle № 2,  though today it is difficult to say what of these Principles are more 
fundamental. Our article [Petoukhov, 2012a, http://arxiv.org/abs/1102.3596] describes the 
method of dyadic-shift numeration of triplets inside genomatrices [C A; G T](3) and [C T; G A](3) 
on the base of the binary-oppositional attributes of nucleotides A, C, G, T. In the result, the sets 
of 8 triplets with identical dyadic-shift numerations 000, 001,…., 111 arise, and they obey the 
following rule in long nucleotide sequences: the frequency of triplets with a dyadic shift 
numeration (for example “010”) is approximately equal to the frequency of the triplet with 
inverse dyadic shift numeration (“101” in this example)  (other oligonucleotides can be dyadic-
shift numerated by analogy). Inverse numeration is produced by replacement of numbers 0è1 
and   1è0.     Such       sets      of      oligonucleotides      are      main       participants        in                       

the Symmetry Principle № 4:  
- for each of long nucleotide sequences at each level of FGN-3, the total frequency of each 

set of oligonucleotides, which have the same dyadic-shift numeration on the base of the 
method of such numeration from the work [Petoukhov, 2012a], is equal approximately to 
the total frequency of the set of oligonucleotides, which have inverse dyadic-shift 
numeration. 
 
Now let us represent the Symmetry Principle № 5 which speaks about reading frame 

shifts, deletion mutations and also positional permutations in oligonucleotides. Concerning those 
DNA-sequences (including the mentioned genome on Figures 18-21), which have been tested till 
today in the author’s laboratory, we have revealed the following phenomenological facts (this 
study is continued now for a wide list of DNA-sequences of different organisms and organelles): 

- a transformation of long nucleotide sequences by means of a reading frame shift in them 
preserves implementations of  all described Symmetry Principles inside new long 
nucleotide sequences (in our tests, a reading frame shift means that the reading of 
sequence does not begin with its first position, but with one of subsequent positions;  the 
missing fragment of the sequence can be moved into the end of the sequence, and in this 
case a reading frame shift leads to a simple change of order of all sequences at each of 
lower levels of FGN); 

     - a transformation of long nucleotide sequences by means of a deletion mutation (when 
their short parts are missing) preserves implementations of  all described Symmetry Principles in 
new long nucleotide sequences.  

One should consider separately the question about positional permutations in 
oligonucleotides. The theory of noise-immunity coding pays a special attention to permutations 
of elements of transmitted signals. It is obvious that for different n-plets different quantities of 
variants of permutation of their positions exist: 

- for duplets two variants of positional permutations exist (1-2 and 2-1); 
- for triplets six variants of positional permutations exist (1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-

1-3, 1-3-2); 
- for 4-plets 24 variants of positional permutations exist (1-2-3-4, 2-3-4-1, …..); 
- for 5-plets 120 variants of positional permutations exist (1-2-3-4-5, 2-3-4-5-1, …..). 
It is also obvious that if a long nucleotide sequence is interpreted as a sequence of a 

certain type of oligonucleotides (duplets, or triplets, or 4-plets, or 5-plets, …), and one of 
possible positional permutations is done simultaneously inside all of its oligonucleotides, then a 
quite new long nucleotide sequence appears. For example if we have initially a sequence of 
triplets CGA-TAA-AGC-GTC-TAG-CGC-ATC -…, then after changing of the positional order 
from the initial order 1-2-3 to new order 2-3-1 inside each of triplets, we obtain the quite 
different sequence GAC-AAT-GCA-TCG-AGT-GCC-TCA -… . But FGN-3 for this new long 



nucleotide sequence is obeyed the same Symmetry Principles №№ 1-3 which are described 
above. We name simultaneous positional permutations inside all oligonucleotides of a certain 
type as “collective positional permutations” inside these oligonucleotides. The author proposes a 
brief formulation of these phenomenological facts by the following way.  

The Symmetry Principle № 5: 
- reading frame shifts and deletion mutations in long nucleotide sequences and also 

collective positional permutations inside their oligonucleotides don't essentially 
violate implementations of all the Symmetry Principles described in this article for 
long nucleotide sequences and their fractal genetic net (FGN-3). 
 

It appears that the described FGN-3 and fractal-like properties of long genetic sequences, 
which are related to the invariance of these Symmetry Principles, have a biological value (a 
biological sense) associated with mutational changes of such sequences and with evolutionary 
producing new types of DNA-sequences. The author supposes that mechanisms of biological 
evolution use these permutational and other described properties of long nucleotide sequences in 
producing new biological organisms and organelles. For instance new DNA-sequences  can be 
constructed in the course of biological evolution of organisms by means of combinatorics of 
nucleotide sequences from different levels of FGN (including genetic crossing among long 
nucleotide sequences from different levels of FGN by analogy with well-known examples of 
genetic crossing). One should note here that the question about permutational properties of 
DNA-sequences is very important because some biological organisms differ each from other 
only by permutations in their DNA-sequences (see for example the book [Pevzner, 2000]). The 
proposed method of FGN is the new effective and useful method in the field of bioinformatics, 
molecular genetics and evolutionary biology. 

 
The author supposes that for long nucleotide sequences the following Symmetry Principle 

№ 6 exists also, which compares a total frequency Feven of all n-plets (oligonucleotides) in 
columns with even numerations in matrices [C T; A G](n) (n=1, 2, 3, …) with a total frequency 
Fodd of all n-plets in columns with odd numerations in the same matrices. Let us numerate 
columns from left to right in these matrices by numbers 0, 1, 2, 3, … and then let us pay our 
attention separately to the first set of n-plets in columns with even numeration (0, 2, 4, …) and to 
the second set of n-plets in columns with odd numeration. We name conditionally the first set as 
the set of the even type (or briefly, the even-set) and the second set as the set of the odd type (or 
the odd-set). For example, the genomatrix [C T; A G](2) contains two sets of duplets (Figure 11):  
1) the even-set, which represents the columns with even numerations 0 and 2, contains the 8 
duplets (CC, CA, AC, AA, TC, TA, GC, GA); 2) the odd-set, which represents the columns with 
odd numerations 1 and 3, contains the 8 duplets (CT, CG, AT, AG, TT, TG, GT, GG). Or in the 
genomatrix [C T; A G](3) we have two sets of triplets (Figure 11): 1) the even-set, which 
represents the columns with even numerations 0, 2, 4, 6, contains the 32 triplets (CCC, CCA, 
CAC, CAA, ACC, ACA, AAC, AAA, CTC, CTA, CGC, CGA, ATC, ATA,  AGC, AGA, TCC, 
TCA, TAC, TAA, GCC, GCA, GAC, GAA, TTC, TTA, TGC, TGA, GTC, GTA, GGC, GGA); 
2) the odd-set, which represents the columns with odd numerations 1, 3, 5, 7, contains the 32 
triplets (CCT, CCG, CAT, CAG, ACT, ACG, AAT, AAG, CTT, CTG,  CGT, CGG, ATT, ATG, 
AGT, AGG, TCT, TCG, TAT, TAG, GCT, GCG, GAT, GAG, TTT, TTG, TGT, TGG, GTT, 
GTG, GGT, GGG).  

We are studying of long nucleotide sequences to compare the total frequencies Feven and 
Fodd of n-plets from the even-sets and from the odd-sets at different levels of FGN-3. Our initial 
research results confirm that these frequencies are approximately equal. Figure 23 confirms this 
fact for the case of duplets from the even-set and the odd-set of sequences S0, S1/0, S1/1,  S1/2, 
S2/00, …, S3/222 at the first four levels of the FGN-3 of the above-considered Mycoplasma 
crocodyli MP145 chromosome, complete genome (NCBI Reference Sequence: NC_014014.1 
http://www.ncbi.nlm.nih.gov/nuccore/294155300). More precisely, Figure 23 shows percentage 



differences between the total frequencies Feven and Fodd of duplets from the even-set and the odd-
set of the Mycoplasma crocodyli MP145 chromosome. Here Fodd is taken as 100%, and its 
percentage difference ∆ in relation to Feven is calculated in each case by means of the formula ∆ = 
100*(1 – Fevev/Fodd). For example, in the initial nucleotide sequence S0, duplets from the even-set 
are met 232415 times (Feven=232415) and duplets from the odd-set are met 234764 times 
(Fodd=234764). In accordance with the formula we have  ∆S0 = 100*(1 – 232415/234764) = 1, 
001% (see ∆S0 in Figure 23). 
 

∆S0 ∆S1/0 ∆S1/1 ∆S1/2 ∆S2/0 ∆S2/01 ∆S2/02 ∆S2/10 

1,001% 1,618% 0,259% 1,598% 2,225% 1,749% 1,142% -0,611% 

 

∆S2/11 ∆S2/12 ∆S2/20 ∆S2/21 ∆S2/22 ∆S3/000 ∆S3/001 ∆S3/002 

0,300% 0,997% 0,974% -0,008% 1,991% 0,737% 0,438% 2,781% 

 

∆S3/010 ∆S3/011 ∆S3/012 ∆S3/020 ∆S3/021 ∆S3/022 ∆S3/100 ∆S3/101 

1,446% 1,605% 1,332% 0,553% 1,309% 0,461% -3,362% 0,415% 

 

∆S3/102 ∆S3/110 ∆S3/111 ∆S3/112 ∆S3/120 ∆S3/121 ∆S3/122 ∆S3/200 

-0,510% 0,783% 0,392% 0,046% 1,423% 0,966% 1,058% 1,241% 

 

∆S3/201 ∆S3/202 ∆S3/210 ∆S3/211 ∆S3/212 ∆S3/220 ∆S3/221 ∆S3/222 

3,3640% 2,601% 0,507% 1,149% 0,069% 4,7188% 0,966% 2,894% 

 
Figure 23. Percentage differences ∆ between the total frequencies Feven and Fodd of duplets from 
the even-set of duplets (CC, CA, AC, AA, TC, TA, GC, GA) and from the odd-set of duplets 
(CT, CG, AT, AG, TT, TG, GT, GG) in sequences S0, S1/0, S1/1,  S1/2, S2/00, …, S3/222 at the first 
four levels of the FGN-3 of the Mycoplasma crocodyli MP145 chromosome, complete genome 
(NCBI Reference Sequence: NC_014014.1 http://www.ncbi.nlm.nih.gov/nuccore/294155300). 
The initial sequence S0 contains 934379 nucleotides. Percentages are shown with a precision up 
to three decimal places. 

 
Data of Figure 24 confirms the approximate equality of Feven and Fodd of triplets in the 

same sequences S0, S1/0, S1/1,  S1/2, S2/00, …, S3/222 at the first four levels of the FGN-3 of the 
Mycoplasma crocodyli MP145 chromosome.  

 
∆S0 ∆S1/0 ∆S1/1 ∆S1/2 ∆S2/0 ∆S2/01 ∆S2/02 ∆S2/10 

1,455% 1,472% 0,741% 2,074% 0,605% 1,679% 2,359% -­‐0,713% 

 

∆S2/11 ∆S2/12 ∆S2/20 ∆S2/21 ∆S2/22 ∆S3/000 ∆S3/001 ∆S3/002 

-­‐0,830% 0,179% 2,268% 0,237% 2,697% -­‐1,837% -­‐0,644% -­‐3,296% 

 



∆S3/010 ∆S3/011 ∆S3/012 ∆S3/020 ∆S3/021 ∆S3/022 ∆S3/100 ∆S3/101 

-­‐0,713% 0,260% 3,459% 1,804% 1,224% 3,459% -­‐3,260% -­‐1,555% 

 

∆S3/102 ∆S3/110 ∆S3/111 ∆S3/112 ∆S3/120 ∆S3/121 ∆S3/122 ∆S3/200 

-­‐3,475% 3,358% -­‐2,156% -­‐1,485% -­‐0,017% 0,536% -­‐1,379% 0,017% 

 

∆S3/201 ∆S3/202 ∆S3/210 ∆S3/211 ∆S3/212 ∆S3/220 ∆S3/221 ∆S3/222 

1,018% 0,812% 4,492% -­‐1,239% 1,052% 2,686% -­‐1,168% 2,212% 

 
Figure 24. Percentage differences ∆ between the total frequencies Feven and Fodd of triplets from 
the even-set of triplets (CCC, CCA, CAC, CAA, ACC, ACA, AAC, AAA, CTC, CTA, CGC, 
CGA, ATC, ATA,  AGC, AGA, TCC, TCA, TAC, TAA, GCC, GCA, GAC, GAA, TTC, TTA, 
TGC, TGA, GTC, GTA, GGC, GGA) and from the odd-set of triplets (CCT, CCG, CAT, CAG, 
ACT, ACG, AAT, AAG, CTT, CTG,  CGT, CGG, ATT, ATG, AGT, AGG, TCT, TCG, TAT, 
TAG, GCT, GCG, GAT, GAG, TTT, TTG, TGT, TGG, GTT, GTG, GGT, GGG) in sequences 
S0, S1/0, S1/1,  S1/2, S2/00, …, S3/222 at the first four levels of the FGN-3 of the Mycoplasma 
crocodyli MP145 chromosome, complete genome (NCBI Reference Sequence: NC_014014.1 
http://www.ncbi.nlm.nih.gov/nuccore/294155300). The initial sequence S0 contains 934379 
nucleotides. Percentages are shown with a precision up to three decimal places. 

 
In a favor of existence of the Symmetry Principle № 6, the additional evidence is the 

following. Let us compare the total frequencies Feven and Fodd of triplets from the whole human 
genome, which contains the huge number 2.843.411.612 (about three billion) triplets. 

Figure 25 shows frequencies of each of 64 triplets in the whole human genome from the 
article [Perez, 2010]. One can see from this Figure that frequencies of different triplets can differ 
in many times. For example, the frequency of the triplet CGA is equal to 6.251.611 and the 
frequency of the triplet TTT is equal to 109.591.342. These two frequencies differ in 18 times 
approximately. But values of the total frequencies Feven and Fodd of triplets are equal to within 
0.12%. 

 
triplet 

triplet 
frequency 

 
triplet 

triplet 
frequency 

 
triplet 

triplet 
frequency 

 
triplet 

triplet 
frequency 

AAA 109143641 CAA 53776608 GAA 56018645 TAA 59167883 
AAC 41380831 CAC 42634617 GAC 26820898 TAC 32272009 
AAG 56701727 CAG 57544367 GAG 47821818 TAG 36718434 
AAT 70880610 CAT 52236743 GAT 37990593 TAT 58718182 
ACA 57234565 CCA 52352507 GCA 40907730 TCA 55697529 
ACC 33024323 CCC 37290873 GCC 33788267 TCC 43850042 
ACG 7117535 CCG 7815619 GCG 6744112 TCG 6265386 
ACT 45731927 CCT 50494519 GCT 39746348 TCT 62964984 
AGA 62837294 CGA 6251611 GGA 43853584 TGA 55709222 
AGC 39724813 CGC 6737724 GGC 33774033 TGC 40949883 
AGG 50430220 CGG 7815677 GGG 37333942 TGG 52453369 
AGT 45794017 CGT 7137644 GGT 33071650 TGT 57468177 
ATA 58649060 CTA 36671812 GTA 32292235 TTA 59263408 
ATC 37952376 CTC 47838959 GTC 26866216 TTC 56120623 
ATG 52222957 CTG 57598215 GTG 42755364 TTG 54004116 
ATT 71001746 CTT 56828780 GTT 41557671 TTT 109591342 



 
Figure 25. Quantities of repetitions of each triplet in the whole human genome (data are 

taken from the work [Perez, 2010]) 
 
Really from Figure 25, one can calculate the total frequencies Feven and Fodd of triplets 

from the whole human genome and receive the confirmation of their approximate equality:                         
• Feven = 1.420.853.821 for the even-set of 32 triplets (CCC, CCA, CAC, CAA, ACC, 

ACA, AAC, AAA, CTC, CTA, CGC, CGA, ATC, ATA,  AGC, AGA, TCC, TCA, TAC, 
TAA, GCC, GCA, GAC, GAA, TTC, TTA, TGC, TGA, GTC, GTA, GGC, GGA);  

• Fodd = 1.422.557.791 for the odd-set of 32 triplets (CCT, CCG, CAT, CAG, ACT, ACG, 
AAT, AAG, CTT, CTG,  CGT, CGG, ATT, ATG, AGT, AGG, TCT, TCG, TAT, TAG, 
GCT, GCG, GAT, GAG, TTT, TTG, TGT, TGG, GTT, GTG, GGT, GGG); 

• The percentage difference between these Feven and Fodd is equal to 0,12%.  
 

The appropriate Symmetry Principle № 6, which should be studied in additional 
researches of long nucleotide sequences, can be formulated in the following manner: 
 
- for each of long nucleotide sequences at each level of FGN-3 the following rules hold true: the 
total frequency Feven of all n-plets from the columns with even numerations inside the genomatrix  
[C T; A G](n) (here n =1, 2, 3, at least) is approximately equal to the total frequency Fodd of all n-
plets from the columns with odd numerations inside the same genomatrix. 

 
Our approaches concern to one of important questions of modern science also: the 

existence of fractal images in genetic systems. A number of publications are devoted to fractal 
features of genetic texts [Jeffry, 1990; Pellionisz et al, 2011; Petoukhov, 2008b;  Petoukhov, He, 
2009; Skaletsky et al., 2003; Yam, 1995, etc]. Interesting data about fractal approaches in 
genetics, including materials about an important connection of fractal defects with cancer, are 
presented at the WEB site by A.Pellionisz 
[http://www.junkdna.com/the_genome_is_fractal.html]). Researches in this direction proceed all 
over the world. In this article the author proposes Fractal Genetics Nets (FGN) as a new tool to 
study fractal-like properties of long DNA-sequences and also describes new fractal-like 
properties of such nucleotide sequences. The author supposes that these FGN and fractal-like 
properties of long nucleotide sequences can lead to new principles and systems in the field of 
signal processing, recognition of images and artificial intellect. They are used now in the 
author’s laboratory to create new genetic algorithms for different mathematical and technological 
applications. 

We plan to publish in the future other our results on study of FGN and the Symmetry 
Principles concerning to a wide list of long DNA-sequences of different organells and organisms 
from different taxonomical classes.    
 

12 Conclusion remarks  
 
Many general bioinformation properties exist which should be studied in the field of 

bioinformatics:  
• noise-immunity of genetic coding; 
• management and synchronization in a huge hierarchy of cyclic bioprocesses;  
• compression of inherited information data; 
• primary structures of proteins, etc. 
 
The list of these scientific problems can be added by a list of mathematical and technological 

problems from the field of genetic algorithms which is developed intensively in world science 



during last decades (for example see [Goldberg, Korb, Deb, 1989; Forrest, Mitchell,1991]). One 
can think that results of matrix genetics will be useful in many directions of such studies. 

Described results demonstrate that the matrix approach to hierarchical systems of the 
genetic code can discover hidden interrelations among these systems. The matrix representation 
of the genetic systems is the effective cognitive form to reveal their algebraic properties, etc. 
Matrix genetics gives new knowledge about deep analogies between the structure of the genetic 
code and methods of the theory of digital signal processing. Matrix genetics proposes new 
mathematical models of biological self-reproduction systems. In our opinion, the condition of 
noise immunity is the basis of many structural peculiarities of the genetic code systems. The 
utilization of this condition in matrix analysis of the genetic code systems can lead to discovers 
of new biological rules and of new mathematical models. It can lead also to new effective 
decisions in the fields of DNA-computers, quantum computers, nanotechnologies, spectral 
analysis and theoretical biology. The algebraic essence of the code degeneracy, reflected in 
mosaics of the described genomatrices, are represented in the publications [Petoukhov, 
arXiv:0803.3330, arXiv:0805.4692, arXiv:0809.2714; Petoukhov, 2008b; Petoukhov, He, 2009]. 

The revealed connection of genetic code structures with projector operators is one of new 
promising ways to introduce powerful algebraic methods into bioinformatics and genetic 
algorithms. Special attention should be paid to mentioned Boolean algebras of genoprojectors 
because Boolean algebras are explores in many scientific fields from psychology to computers. 
How Boolean algebras of genoprojectors are connected with physiological computers of 
biological organisms? It is one of many thematic questions which should be studied in future. 

The described data about natural possibilities of representations of ensembles of 
molecular-genetic elements in a form of families of unitary matrices testify that the nature has 
chosen such scheme of the genetic code which is related with unitary symmetries and with a 
special set of cyclic groups of unitary transformations. Why the nature has constructed the 
genetic alphabet which consists of the four nitrogenous bases with their binary-oppositional 
attributes? The possible reason of this is that the simplest unitary matrix consists of four complex 
numbers. This thesis is supported by the fact that the genetic molecules belong to the world of 
quantum mechanics, where unitary transformations play an important role since the evolution of 
a closed quantum system is unitary. 

This version of the article contains new materials about the method of fractal genetic nets 
(FGN) and about new Symmetry Principles in long nucleotide sequences. These materials 
represent new tools to study hidden regularities of molecular-genetic systems. The described 
Symmetry Principles are leading to new understanding and new models of genetic information. 
In our opinion, materials of this article are important to develop algebraic biology. 
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