A Novel Approach for Modeling Business Process Definitions
Jean-Jacques Dubray

Eigner

200 Fifth Ave

Waltham, MA 02451

Abstract

In this paper we introduce a new approach to specify the metamodel of a business process definition. The concept of message exchanges between two roles assembled as Business Transaction represents the foundation of our process definition metamodel. This type of model enables the definition of decentralized processes which involve business-to-business collaborations, user interactions as well as application-to-application integration, in a technology neutral way.
Introduction

The “process-oriented” logic of an application has received increased attention in the past 3 years. It was first identified by the initial members of the BPMI consortium
 that this kind of business logic is locked within applications, most often as hard-to-maintain code, just like data was locked in the 70s before the development of relational databases. RDBMS introduced a clear separation of the data and the data management system from the “model-oriented” business logic of the application. In the past this concept was not possible because of network bandwidth and the variety of proprietary platforms, data sources and applications that needed to be integrated. Tremendous progress have been made in the last few years and it is expected now that business applications will achieve a new level of development productivity and customization once we can successfully create a metamodel of the process-oriented logic and develop “business process management systems” which can execute it.
However, if we want to successfully extract the “process-oriented” logic from the applications, we must first agree on what needs to be modeled, automated and executed. Alonso et al
 provide an excellent classification of business processes as administrative, ad hoc, collaborative and production processes. In this paper, we distinguish at least four levels of business processes which need all to be supported by such metamodel. These levels can participate in any of the process categories identified by Alonso. The first level corresponds to “enterprise processes” which provide a global view of the activities performed by a value chain to achieve a particular goal. These processes do not show any boundary and typically span multiple businesses (for instance “make a plane”). Their automation often requires several business process management systems which cooperate to achieve a particular goal. The second level corresponds to “executable processes” which coordinate the actions of employees and the business transactions initiated by systems and business partners within the boundary of a single corporation or department to achieve a particular business goal (for instance “process an order”). Executable business processes may be executed by a single business process management system. The state of executable processes is centrally accessible. In the case of enterprise processes, the state is often distributed and is not physically or even logically centralized because of corporation boundaries. The third level corresponds to “business process collaborations” (or collaboration) models the interactions between executable processes. The last level is called “task” and isolates the interactions between a user or a system and the business process itself. This level is often related to “workflow” defined as a succession of user “tasks” handling specific work items.
Several approaches
 have been suggested to define the metamodel of these different levels. Historically most approaches are based on the concept of “activity” which represents the lowest level of decomposition of the business process. For instance in BPML 1.0
 everything is an activity including the control flow. An activity represents a unit of work performed by a user, system or partner. An activity may have some input and output and some associated actions (pre and post activity). A business process is merely considered a succession of activities following a specific control flow. When an activity completes the control flow specifies which activity starts. This approach is usually very close to the concept of UML activity diagrams (UML v1.x).
The second approach is to consider the states of a company and the actions which are executed that cause the state to change. This approach is actually not fundamentally different from the one based on activity. An activity is usually performed to go from one state to another. These states actually should be called pseudo-states as they do not represent physical states of the company but rather some partial state that is modified in isolation within the boundaries of a business process. Typically a transition from a state to another will be modeled as an Event-Condition-Action (ECA).
These approaches have shown their limits in their ability to model the message flow of business process as well as providing a good interoperability model between different BPMS1. For instance, in some cases one has to create a “dummy” activity just to model the fact that you are waiting on a message. A state or activity based model leads to business process definitions which are “centralized”. The process merely distributes the work. In particular it is difficult to associate a direct communication between two components to a process state change.
In this paper we introduce a simple model which is based on the flow of messages between roles participating in the business process. The flow of messages between any two roles is defined as a collaboration.
Message Flow, Control Flow and Data Flow

In our model, the fundamental entity of a business process is the “message” and not the notion of “unit of work”. In other words, a business process at any of the four levels that we identified can be expressed as an exchange of messages between two or more roles. Every state change within a company can be associated with the processing of a message.
These messages obey particular a control flow (no control flow being a particular case of a control flow), and may or may not carry data or binary documents -the data flow associated with the message flow.
A message is defined between two roles, it has a direction (from role A to role B), it has a name (usually composed of a verb and a noun) and it may optionally have a payload made of a primary business document and related attachments. Exceptions may occur during its realization: technical exceptions (the message could not be received, or the sequence of the message is incorrect), business exceptions (the message was received but could not be processed, therefore the respective state could not be reached, or the message itself signals an exception, such as Reject Purchase Order) and timeout exceptions (the message did not arrive on time). These exceptions are based on the semantics of ebXML BPSS
.
Message exchanged may be a) individual notifications not logically related to any other message exchange, or b) a request message followed by ‘n’ correlated responses. The responses maybe exclusive (only one response out of several possible) or additive (received one after another, including several times the same message type). A message exchange whether it is of type a) or b) is called a business transaction2.
The first step in defining a business process is to identify all the roles and all the possible message exchange between these roles regardless of the sequence of message exchange.

The second step specifies the data flow, identifying the payload of each message and the relations between the payloads of different messages, including the transformations.

The third step is to define the possible (or lack of) control flow. We do not believe that there is only one possible control flow model possible. Control flow may be defined with a block-structured approach, or with transitions. It is conceivable we also need to be able to define ad hoc processes including some parts of the control flow that could be defined dynamically at run-time. The business process definition metamodel should exhibit a “plug-able” control flow definition. This is only possible if the message flow, data flow and control flow specifications are independent.
We can envisage other steps such as one step in which “activities” or “transactions” are defined.

Message Flow of an Executable Business Process
The message flow definition is achieved by identifying all roles and all individual message exchange between the respective roles. In addition, we need to specify a role which can be identified as “self” which represents the perspective of the process. Typically, this “role” will be implemented by the business process management system, while other roles will be implemented by other systems and components. This role is involved each time services such as transformation or routing is needed to connect the sender or a message to its received. This model allows for external roles such as buyer, seller, finance institution… for which specific collaboration agreements are in place.
The important aspect of this model is that when a given message exchange does not need to be mediated by a business process management system, it can be directly expressed as an exchange between the two specific roles (between your order entry and billing components). However, this particular message exchange is integral part of the business process definition because it changes the state of the process instance. This is a very important concept which is not well addressed by traditional “centralized” business process definition where all the message flow is modeled between the different parties and the process engine (BPML, XLang, WSFL, WfMC).
Figure 1 represents a simple “Process Purchase Order” executable business process based on the OAGIS
 scenario 40. There are four roles involved in this particular business process: buyer, supplier, order entry and billing. As we mentioned earlier the “Supplier” role represents “self” i.e. the perspective of the BPMS. We adopt a simple notation:

· Each role is represented by a swim lane.
· Each box represent a message exchange including a either a notification or a request/response(s).
· The arrow across the boxes indicates the direction of the initiating message.
· The left side and right of the box are represented within the swim lane of the role participating in the message interchange.
The scenario features a business partner (buyer). Our model is technology neutral: every message exchange can be done with a different protocol over various transports (technical characteristics). In particular it is important to be able with the technologies du jour (such as Web Services and ebXML) as well as the coming ones. In a previous paper
 we have represented ebXML BPSS business transactions as square box and web service operations as rounded boxes. We keep this convention here.

The first two business transactions (BTA1 and OpA1) are equivalent; of course they typically deal with different data formats. They are mediated by the process engine (represented by the supplier role). Because the message types are different, the process engine may have the opportunity to apply a transformation to the payload.

[image: image1.wmf]Buyer

Supplier

(Self)

Order Entry

PO

BTA1

OpA1

OpA3

BTA2

PO

Invoice

Invoice

Billing

Success

Failure

OpA2

Sales

order

Start

Figure 1 Message Flow of a "Process Purchase Order" executable business process
It may also be possible to route the incoming purchase order from the buyer to a manager for approval (Figure 2). The business transaction with the manager role is a PO (request) and a PO (response) with the approval value which would have been added. Alternatively it is also possible to keep the approval information separate and return an approval response.

When we define the control flow, we would probably define a “choice” control flow that would decide to directly route the PO to the order entry component or ask for a manager approval based on an amount value for example.

 [image: image2.wmf]Buyer

Supplier

(Self)

Order Entry

PO

AckPO

BTA1

OpA1

PO

AckPO

Manager

OpA2

Sales

order

Start

Wit1

PO

PO

Billing

Figure 2 User interaction modeled as a message exchange
We could also design a scenario where the purchase order may be routed directly to the Order Entry component (Figure 3) completely bypassing the process engine, without any transformation. This is not a typical scenario but it is conceivable and supported by our model.
[image: image3.wmf]Buyer

Supplier

(Self)

Order Entry

PO

BTA1

Figure 3 A direct integration between a B2B message exchange and an EIS component

The business process definition specified as a message flow may also be decomposed in individual collaborations involving any two roles. These collaborations are important to identify because the technical binding usually happens at the collaboration level as it is expected that two roles will often exchange messages with the same technology. Note that this is not mandatory as several collaborations may be defined between any two roles. However, it is expected that any binding between a message and a technology will happen at the collaboration level. Collaboration may have their own “choreography” specification. This information can be used in two ways: first we could infer the appropriate control flow (at least assist the user in designing the control flow) or simulate the execution of a process definition and verify that it is compatible with the choreography specifications.
Our model as we define it is a generalization of the ebXML BPSS specification3 which specifies binary collaborations as a message exchange packaged as business transactions.
The fundamental advantage of this model is to keep the correlation of request and responses that constitute the same transaction as part of the process definition. Other approaches like the one of BPML or WfMC based on activity tend to separate request (coming from a business partner or a component), processing of this request – as a series of activities performed by users or internal components – and response to the initial requests assembled during the processing of the request. This kind of separation makes the binding between a collaboration definition (whether specified by BPSS or a global model like the one of WSFL
) harder.

The major advantage of this approach is to organize the process definition as a series of collaborations between components, between components and the process engine itself, or between business partners and the process engine or directly with components. If the process engine adds value, for instance by routing or transforming a message, its services will be used. Otherwise, this process definition model allows for a decentralized communication directly between two components or a component and a business partner. This approach leads to greater scalability. Naturally, at the implementation level the process must be made aware of the message exchange such that the process state can advance.
[image: image4.emf]ebXML WSDL

Process

CollaborationActivity

1..*

Role

1

initiating

1

1

BusinessTransactionActivity

1..*

BusinessTransaction

1

ebXMLBusinessTransaction

Activity

Collaboration

Operation

Figure 4 - UML Class Diagram of a Business Process Definition

It also makes the BPMS adopt a more passive profile, not distributing work but rather monitoring that work happen as defined and adding value as a mediator. It is of course always possible to use a more centralized mode as needed.
Figure 4 represents the UML Class diagram of the message flow of a business process definition. Green elements correspond to definitions, and yellow elements correspond to a usage of a definition (a CollaborationActivity is a usage of a Collaboration –Definition – in the context of a Process). The concept of activity becomes a characteristic of the message exchange rather than its nature. In particular an activity has a state associated with it which goes from: started to completed
.
This approach can be used to model all levels of process-oriented logic that we defined in the introduction. Collaboration are by definition modeled following the same approach because, we actually took the collaboration definition model and extended to specify an executable process. An enterprise process being the combination of collaborations and executable processes may also be modeled the same approach. I will show in a subsequent paper how “tasks” may also be modeled following the same approach.

This approach simplifies interoperability between different engines as it is likely that a collaboration activity sharing the same collaboration definition may be used by each process definition to model its interactions with the other processes.

Finally, this approach also simplifies the notion of process composition, since a “sub process” may simply be viewed as a new role within the global process definition. Like BPML, this sub-process maybe “spawned” or “called” based on the nature of the collaboration that links it to the parent process. But unlike BPML, a sub-process may also fully “collaborate” with is parent process spanning multiple peer-to-peer data exchanges.
Not that this approach is in a way related to the EDOC specification
. This is no surprised since there has been a conscious alignment made by design between ebXML BPSS and the EDOC specification. However, EDOC does not integrate well the concept of B2B “collaboration”, does not rely on generic business transaction definitions, and offers very limited control flow specification. EDOC is rather focused on defining a new architecture for business object components and their composition. Our model introduces new concepts such as external roles such as “Buyer”, user roles such as “Manager” and the notion of “Self” which represents the business process management system.

Message flow and Unit of Work

[image: image5.wmf]Buyer

Supplier

(Self)

Order Entry

PO

AckPO

BTA1

OpA1

PO

AckPO

Manager

OpA2

Sales

order

Start

Wit1

PO

PO

Billing

Unit of

Work

Unit of

Work

Mapping

Routing

Figure 5 - Relationship between unit of work (a.k.a. activity) and message exchange

The major problem we see in relating in an approach based on “unit work” is that typically “unit of work” or activities are not homogeneous with respect to the number of messages they are related to. Here we see that the Order Entry activity is related to four messages, while the Billing activity is related to only two messages while the process engine is not really doing any specific work besides mapping and routing messages. It is conceivable that one could also define activities that are related to many more messages in particular when forks are used to specify that an activity need to wait on more than one request to do some work. In this case we could end up having an activity coordinating the exchange of 6 or more messages.
Typically standards like BPML, XLang or WSFL consider message exchange and activity at the same level. So a unit of work can only be viewed as a request/response from the perspective of the process engine. It is then become very difficult to describe cases like the Order Entry unit of work in Figure 5 where the unit or work coordinates several business transactions.
In these standards, the control flow is then used to tie together related message exchanges, therefore establishing a convolution between the message flow and the control flow.

Example

Here is an example of an XML definition corresponding to Figure 2.

<?xml version="1.0" encoding="UTF-8"?>
<ProcessSpecification

xmlns="http://www.ebxml.org/BusinessProcess"

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://www.ebxml.org/BusinessProcess C:\Projects\EBPML\ebBPMML0.5.xsd"

name="SimpleProcessDefinition"

uuid="5678"

<!-- Business transaction definition -->

<BusinessTransaction name="ProcessBuyerPO_BT">

…

</BusinessTransaction>

<BusinessTransaction name="ProcessPO_BT">

…

</BusinessTransaction>

<BusinessTransaction name="ProcessPO_BT">

…

</BusinessTransaction>

<BusinessTransaction name="ApprovePO_BT">

…

</BusinessTransaction>

<BusinessTransaction name="SynchSalesOrderPO_BT">

…

</BusinessTransaction>

<!-- Process definition -->

<Process name="ProcessOrder" initiatingRoleID="R1" timeToPerform="P5D">

<Role name="Buyer" nameID="R1" type="partner"/>

<Role name="Supplier" alias="Self" nameID="R2" type="process"/>

<Role name="OrderEntry" nameID="R3" type="component"/>

<Role name="Billing" nameID="R4" type="component"/>

<Role name="Manager" nameID="R5" type="user"/>

<CollaborartionActivity
name="ProcessBuyerPO_CA" fromRole="Buyer" toRole="Supplier"

collaboration="ProcessBuyerPO_C" timeToPerform="P5D"/>

<CollaborartionActivity
name="ProcessPO_CA" fromRole="Self" toRole="OrderEntry"

collaboration="ProcessPO_C" timeToPerform="P1D"/>

<CollaborartionActivity
name="ApprovePO_CA" fromRole="Self" toRole="Manager"

collaboration="ApprovePO_C" timeToPerform="P4H"/>

<CollaborartionActivity
name="SynchSalesOrrder_CA"

fromRole="OrderEntry" toRole="Billing"

collaboration="SynchSalesOrder_C" timeToPerform="P4H"/>

</Process>

<!-- Collaboration definition -->

<Collaboration name=" ProcessBuyerPO_C" fromRole="Buyer" toRole="Supplier">

<BusinessTransactionActivity
name="ProcessBuyerPO_BTA" fromRole="Buyer" toRole="Supplier"

businessTransaction="ProcessBuyerPO_BT" timeToPerform="P1D"/>

</Collaboration>

<Collaboration name="ProcessPO_C" fromRole="Self" toRole="OrderEntry">

<BusinessTransactionActivity
name="ProcessPO_BTA" fromRole="Self" toRole="OrderEntry"

businessTransaction="ProcessPO_BT" timeToPerform="P1H"/>

</Collaboration>

<Collaboration name="ApprovePO_C" fromRole="Self" toRole="Manager">

<BusinessTransactionActivity
name="ApprovePO_BTA" fromRole="Self" toRole="Manager"

businessTransaction="ApprovePO" timeToPerform="P4H"/>

</Collaboration>

<Collaboration name="SynchSalesOrder_C" fromRole="OrderEntry" toRole="Billing">

<BusinessTransactionActivity
name="SynchSalesOrder_BTA" fromRole="OrderEntry" toRole="Billing"

businessTransaction="SynchSalesOrder_BT" timeToPerform="P1H"/>

</Collaboration>
</ProcessSpecification>
Control Flow
I would like to take the risk to disappoint many by asserting that there is not a single “magic” control flow which can be used in all situations to model any scenario.
So far there have been two approaches to establishing the model of a control flow:

· Annotated directed graph where the nodes represent the activities (unit of work) and the edges represent the flow of control and data among the different steps

· Block-structured approach where the units of work are assembled into blocks of different types (BPML uses All and Sequence to express parallel or serial execution of the unit of work).

Of course a combination of both approaches is always possible. Blocks are important to model and demarcate the context of transactions while transitions are easier to use to model ad hoc or collaborative processes.
These models remain almost always too low level and a “library” of construct need to be built on top of the basic concepts to enable an effective modeling of business processes. There is also the semantics of “publish/subscribe” which is very important for modeling application-to-application integration scenarios which is often overlooked by control flow specifications such as WfMC, BPML 1.0, WSLF, XLang…

[image: image6.wmf]Buyer

Supplier

(Self)

Order Entry

PO

AckPO

BTA1

OpA1

PO

AckPO

Manager

OpA2

Sales

order

Start

Wit1

PO

PO

Billing

Failure

Success

[

BusinessFailure

]

[Success]

Figure 6 - Control flow added to the message flow
Our approach is to avoid constraining the user into a given control flow model. In particular, we may want to use the control flow model of ebXML BPSS3. Its model is based on a direct graph. However, there are also some particularities that I would like to stress. This model offers a semantic called “onInitiation” which is an attribute of a transition from a business transaction activity. This simply means that upon the request of a business transaction activity, this transition will fire. This is what allows us to keep the corresponding business transaction activity “intact” and does not require separating request, processing and response from a process definition perspective. Figure 5 represents the control flow of the example detailed in Figure 2.
A synchronization bar (in gray) allows us to evaluate a condition expression on the context of the purchase order and decide whether this particular PO requires approval from a manager.
This can be expressed simply in XML using the BPSS control flow elements:

<?xml version="1.0" encoding="UTF-8"?>
<ProcessSpecification

xmlns="http://www.ebxml.org/BusinessProcess"

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://www.ebxml.org/BusinessProcess C:\Projects\EBPML\ebBPMML0.5.xsd"

name="SimpleProcessDefinition"

uuid="5678"

<!-- Process definition -->

<Process name="ProcessOrder" initiatingRoleID="R1" timeToPerform="P5D">

<!-- Roles -->

…

<!-- Collaboration activities -->

…

<!-- Control flow -->

<ControlFlow type="ebXMLBPSS " version="1.05">

<Start toBusinessState="ProcessBuyerPO_BTA" />

<Transition
fromBusinessState="ProcessBuyerPO_BTA" toBusinessState="Approve_Fork"

onInitiation="true" conditionGuard="Success"/>

<Fork name="Approve_Fork" />

<Transition
fromBusinessState="Approve_Fork" toBusinessState="ApprovePO_BTA">

<ConditionExpression expressopLanguage="XPath" expression="//Amount/[@value>=1000]">

</Transition>

<Transition
fromBusinessState="Approve_Fork" toBusinessState="ProcessPO_BTA">

<ConditionExpression expressopLanguage="XPath" expression="//Amount/[@value<1000]">

</Transition>

<Transition
fromBusinessState="ApprovePO_BTA" toBusinessState="ProcessPO_BTA"

conditionGuard="TechnicalSuccess"/>

<Transition
fromBusinessState="ProcessPO_BTA" toBusinessState="SynchSalesOrder_BTA"

conditionGuard="Success"/>

<Failure
fromBusinessState="ProcessPO_BTA"

conditionGuard="BusinessFailure"/>

<Success
fromBusinessState="SynchSalesOrder_BTA"

conditionGuard="Success"/>

</ControlFlow>
</ProcessSpecification>
An important point to note is the way this process definition reaches a “failure” end state. If a purchase order requires approval and a manager rejects this purchase order, the transition from the ApprovePO_BTA to ProcessPO_BTA would still fire because it is guarded by a “TechnicalSuccess” condition. This simply means that the work item was executed without problem regardless of the fact that the PO was approved or not. The OrderEntry component should have different business rules that decide whether it will return an AcceptPO or RejectPO response. In the event that this component a RejectPO response, this is considered as a “BusinessFailure” of the business transaction. In this case, the process ends in failure and the last business transaction activity (SynchSalesOrder_BTA) will not be executed.
This model effectively separates the message flow from the control flow, therefore enabling the concept of a plug-able control flow specification. Other approaches including the one of BPML 1.0 require to model a “solicit response” in three activities related by the control flow in order to correlate the request with the response.

We have not addressed the aspects of exception in details. In the example above, we have simply used ebXML BPSS exceptions which are divided in three groups: technical failure (either the request or response could not be processed), business failure (the response what characterized as negative) and timeout (either the request or the response was exchange beyond the allowed time).

ebXML BPSS does not specify particular exception paths. If an exception is detected the control flow will simply continue based on the corresponding transition. The subsequent business transaction activities are no different from the others. Specification like BPML 1.0 introduces the concept of “compensating transactions” that are executed when an exception occurs. Again, we believe that there is not a single and ultimate control flow exception and these kinds of semantics should be handled with a “plug-able” control flow mechanism.

Data and document flow

The message flow serves as the basis of the data flow definition as messages may contain a payload of business documents and binary documents with their metadata. In addition, it is well established that we need to define a set of “properties” also known as “process variables” in which specific values of a business document or metadata of a binary document may be stored and manipulated.

<!-- Process definition -->

<Process name="ProcessOrder" initiatingRoleID="R1" timeToPerform="P5D">

<!-- Roles -->

…

<!-- Collaboration activities -->

…

<!-- Control flow -->

<!—Data flow -->

<DataFlow>

<Property name="POAmount" value="//PO/Amount/@value" />

<Map fromBusinessState="ProcessBuyerPO_BTA" toBusinessState="ApprovePO_BTA"

 fromDocument="PO" toDocument="PO">

<Transformation transformationLanguage="XSLT" transformation="map1.xslt">

</Map>

<Map fromBusinessState="ProcessBuyerPO_BTA" toBusinessState="ProcessPO_BTA"

 fromDocument="PO" toDocument="PO">

<Transformation transformationLanguage="XSLT" transformation="map1.xslt">

</Map>

</DataFlow>
</ProcessSpecification>
There are other aspects associated to the data flow that we do address in this paper. Correlation has been first addressed by Microsoft with the XLang specification
, and it is relatively clear that this approach could be used as the basis of a correlation mechanism for business transactions.
Transactions have not been addressed in this paper. It is expected that in this case, the fact that this process model is based on messages and not “activities” could change significantly the way transactions can be handled.

Conclusion

We have extended the approach of ebXML BPSS which enables the modeling of peer-to-peer business collaboration to be able to model all levels of the process-oriented business logic found in business applications today. This approach based is based on the concept of “Business Transaction” which provide for model for request/response between two roles. Operations of a web service as well as ebXML BPSS business transactions can be bound seamlessly to a business transaction definition. This concept:

· Allows to specify “decentralized” business process definitions,

· Leads itself to a simple specification of a sophisticated interoperability and process composition models.

· Requires a simple data and document flow mapping since most of the data and document flow is already specified as part of the message exchange.

· Simplifies greatly the technical binding since business transaction activities can easily be related to web service operations and WSDL definitions on one hand and ebXML business collaboration definitions on the other hand.

· Enables us to use a very basic but efficient notation

Overall these concepts provide a technology neutral process definition model, unlike some other specification which only focuses on web services.
This concept was also designed with a large number of standard organizations and consortia in mind such as UMM (Unified Modeling Methodology), RosettaNet
, the Open Applications Group, STAR XML
. In particular we believe that all the OAGIS5 integration scenarios may be modeled with this approach.
In three subsequent papers, we will provide a detailed description of the application of this approach to model “tasks” and work items. We will also provide in a general paper the complete specification of the ebPML Process Definition Language. Finally we will give implementation guidelines to the business process management systems that will execute ebPML process definitions.
Glossary

Actor – A physical partner, system component or user participating in a process instance
Business Transaction – a message exchange between two roles. It is either a notification, or a request/response message exchange. The response may be one of many possible responses, or any number of correlated responses.

Business Transaction Activity – the usage of a business transaction within a collaboration definition.

Collaboration – a series of business transaction activities between two roles.

Collaboration Activity – the usage of a collaboration within a process definition

Process – a series of collaboration activities

Role – represent a logical business partner, system component or user within the process definition. Roles are resolved at run time into a physical Actor. A process definition exhibit a special role identified as Self which represents the process instance. A process which interacts with the later is represented by a separate role.
� http://www.bpmi.org

� G. Alonso et al “Functionality and limitation of current workflow systems”, 1997

� M. Peleg et al „Modeling biological processes using Workflow

and Petri Net models“, 2001,

� HYPERLINK "http://smi-web.stanford.edu/people/peleg/ModelingBiologicalProcesses_paper_RBA.pdf" ��http://smi-web.stanford.edu/people/peleg/ModelingBiologicalProcesses_paper_RBA.pdf�

� BPML 1.0 Specification, � HYPERLINK "http://www.bpmi.org" ��www.bpmi.org�, June 2002

� ebXML BPSS team area, � HYPERLINK "http://www.ebtwg.org/projects/documentation/bpschema/ppbpschema.html" ��http://www.ebtwg.org/projects/documentation/bpschema/ppbpschema.html�

� M. Rowell et al, OAGIS 8.0, 2002, � HYPERLINK "http://www.openapplications.org" ��www.openapplications.org�

� Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography”, 2002, � HYPERLINK "http://www.ebpml.org/ebpml.doc" ��http://www.ebpml.org/ebpml.doc�

� WSFL specification, IBM, 2001, http://www.ibm.com

� WfMC Specification, http://www.wfmc.org

� J.J. Halliday et al “Flexible Workflow Management in the OPENflow system”, HP

� XLang specification, Microsoft, 2001, � HYPERLINK "http://www.gotdotnet.com/XLANG.htm" ��http://www.gotdotnet.com/XLANG.htm�

� RosettaNet consortium, � HYPERLINK "http://www.rosettanet.org" ��http://www.rosettanet.org�

� STAR XML working group, � HYPERLINK "http://www.starstandard.org" ��http://www.starstandard.org�

16

